What is the momentum of the block before collision if the block having mass M is moving on the frictionless horizontal surface collides with a spring of constant K and compresses by L?
(A) $L\sqrt {MK} $
(B) $\dfrac{{K{L^2}}}{{2M}}$
(C) Zero
(D) $\dfrac{{M{L^2}}}{K}$
Answer
Verified
122.7k+ views
Hint Use the formula,
$K.E + P.E = E$
where, $K.E$ is the kinetic energy
$P.E$ is the potential energy
$E$ is the energy
Then, make use of the conservation of energy by making kinetic energy and potential energy equal to each other.
Step by Step Solution
We know that, if conservative forces acts on system only the mechanical energy remains constant
$\therefore K.E + P.E = E$(constant)
where, $K.E$ is the kinetic energy
$P.E$ is the potential energy
$E$ is the mechanical energy which is constant
$
\Delta K + \Delta U = 0 \\
\\
$
Therefore, $\Delta K = - \Delta U$
Let the initial velocity be $v$
then, kinetic energy is $\dfrac{1}{2}m{v^2}$
And final potential energy due to spring is $\dfrac{1}{2}k{x^2}$ (where, $x$is the compression)
According to conservation of energy, the energy inside a closed system remains constant
So, the kinetic energy becomes equal to the final potential energy
Therefore, $\dfrac{1}{2}M{v^2} = \dfrac{1}{2}K{x^2}$
$
M{v^2} = K{x^2} \\
{v^2} = \dfrac{{K{x^2}}}{M} \\
v = x\sqrt {\dfrac{K}{M}} \\
$
Here, $x$is the compression. So, according to question $L = $compression
$\therefore v = L\sqrt {\dfrac{K}{M}} \cdots (1)$
Hence, maximum momentum, $P = Mv$
Using the value of $v$ from equation $(1)$ in the formula of momentum
$P = L\sqrt {MK} $
From above, we can say that option (A) is correct.
Note The mechanical energy remains constant when conservative forces act only on the system.
In the conservation of energy, we can say that the two energies become equal to each other because energy inside the closed system remains constant therefore, both become equal.
Momentum is the product of mass and velocity and is denoted by $P$ so, we can express momentum as:
$P = Mv$
$K.E + P.E = E$
where, $K.E$ is the kinetic energy
$P.E$ is the potential energy
$E$ is the energy
Then, make use of the conservation of energy by making kinetic energy and potential energy equal to each other.
Step by Step Solution
We know that, if conservative forces acts on system only the mechanical energy remains constant
$\therefore K.E + P.E = E$(constant)
where, $K.E$ is the kinetic energy
$P.E$ is the potential energy
$E$ is the mechanical energy which is constant
$
\Delta K + \Delta U = 0 \\
\\
$
Therefore, $\Delta K = - \Delta U$
Let the initial velocity be $v$
then, kinetic energy is $\dfrac{1}{2}m{v^2}$
And final potential energy due to spring is $\dfrac{1}{2}k{x^2}$ (where, $x$is the compression)
According to conservation of energy, the energy inside a closed system remains constant
So, the kinetic energy becomes equal to the final potential energy
Therefore, $\dfrac{1}{2}M{v^2} = \dfrac{1}{2}K{x^2}$
$
M{v^2} = K{x^2} \\
{v^2} = \dfrac{{K{x^2}}}{M} \\
v = x\sqrt {\dfrac{K}{M}} \\
$
Here, $x$is the compression. So, according to question $L = $compression
$\therefore v = L\sqrt {\dfrac{K}{M}} \cdots (1)$
Hence, maximum momentum, $P = Mv$
Using the value of $v$ from equation $(1)$ in the formula of momentum
$P = L\sqrt {MK} $
From above, we can say that option (A) is correct.
Note The mechanical energy remains constant when conservative forces act only on the system.
In the conservation of energy, we can say that the two energies become equal to each other because energy inside the closed system remains constant therefore, both become equal.
Momentum is the product of mass and velocity and is denoted by $P$ so, we can express momentum as:
$P = Mv$
Recently Updated Pages
The ratio of the diameters of two metallic rods of class 11 physics JEE_Main
What is the difference between Conduction and conv class 11 physics JEE_Main
Mark the correct statements about the friction between class 11 physics JEE_Main
Find the acceleration of the wedge towards the right class 11 physics JEE_Main
A standing wave is formed by the superposition of two class 11 physics JEE_Main
Derive an expression for work done by the gas in an class 11 physics JEE_Main
Trending doubts
JEE Mains 2025: Check Important Dates, Syllabus, Exam Pattern, Fee and Updates
JEE Main Login 2045: Step-by-Step Instructions and Details
Class 11 JEE Main Physics Mock Test 2025
JEE Main Chemistry Question Paper with Answer Keys and Solutions
JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking
JEE Main 2023 January 24 Shift 2 Question Paper with Answer Keys & Solutions
Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs
NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements
NCERT Solutions for Class 11 Physics Chapter 9 Mechanical Properties of Fluids
Units and Measurements Class 11 Notes: CBSE Physics Chapter 1
JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More
NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line