Answer
Verified
410.1k+ views
Hint: Vapour pressure is used to measure the tendency of a material to change its state into gaseous state and it increases with the increase in temperature. The formula of relative lowering of vapour pressure is:
\[\dfrac{{{P}^{\circ }}-P}{{{P}^{\circ }}}={{x}_{solute}}\]
Where, ${{P}^{\circ }}$is the vapour pressure of pure solvent
And P is the vapour pressure of solution.
x is the mole fraction of solute that is the moles of solute divided by the total moles of solute.
Step by step solution:
-We have to give the relation between the vapour pressure of solution to that of water, and one mole of non-volatile solute is given, so this is a case of relative lowering of vapour pressure.
- This question relates to Raoult’s law, according to which vapour pressure of a solution in which non-volatile solute is present, is equal to the vapour pressure of the pure solvent at that temperature and multiplied by its mole fraction.
- So, the formula of relative lowering of vapour pressure is:
\[\dfrac{{{P}^{\circ }}-P}{{{P}^{\circ }}}={{x}_{solute}}\]
Where, ${{P}^{\circ }}$is the vapour pressure of pure solvent
And P is the vapour pressure of solution.
x is the mole fraction of solute that is the moles of solute divided by the total moles of solute.
- moles of solute given is 1 mole and total moles of solute is 3.
- Now by putting all the values and solving, we get,
\[1-\dfrac{P}{{{P}_{\circ }}}=\dfrac{moles\text{ }of\text{ }solute}{total\text{ }moles\text{ }of\text{ }solute}\]
\[1-\dfrac{P}{{{P}^{\circ }}}=\dfrac{\dfrac{1}{3}}{\dfrac{1}{3}+\dfrac{2}{3}}\]
\[\Rightarrow 1-\dfrac{1}{3}=\dfrac{2}{3}\]
Hence, we can conclude that the correct option is (a) that the vapour pressure of the solution relative to that of water is $\dfrac{2}{3}$.
Additional information:
We will now see how some factors affects the vapour pressure:
- It is observed that as the temperature of the liquid is increased then the vapour pressure also increases.
\[Vapour\text{ }pressure\text{ }\propto \text{ }Temperature\]
- We can also see that the vapour pressure is hardly influenced by any changes in pressure.
Note
- The given question is an example of an ideal solution, that is the solution which obeys Raoult’s law. There are several other examples of ideal solutions that obeys this law are Toluene and Benzene, Ethyl iodide and Ethyl Bromide.
\[\dfrac{{{P}^{\circ }}-P}{{{P}^{\circ }}}={{x}_{solute}}\]
Where, ${{P}^{\circ }}$is the vapour pressure of pure solvent
And P is the vapour pressure of solution.
x is the mole fraction of solute that is the moles of solute divided by the total moles of solute.
Step by step solution:
-We have to give the relation between the vapour pressure of solution to that of water, and one mole of non-volatile solute is given, so this is a case of relative lowering of vapour pressure.
- This question relates to Raoult’s law, according to which vapour pressure of a solution in which non-volatile solute is present, is equal to the vapour pressure of the pure solvent at that temperature and multiplied by its mole fraction.
- So, the formula of relative lowering of vapour pressure is:
\[\dfrac{{{P}^{\circ }}-P}{{{P}^{\circ }}}={{x}_{solute}}\]
Where, ${{P}^{\circ }}$is the vapour pressure of pure solvent
And P is the vapour pressure of solution.
x is the mole fraction of solute that is the moles of solute divided by the total moles of solute.
- moles of solute given is 1 mole and total moles of solute is 3.
- Now by putting all the values and solving, we get,
\[1-\dfrac{P}{{{P}_{\circ }}}=\dfrac{moles\text{ }of\text{ }solute}{total\text{ }moles\text{ }of\text{ }solute}\]
\[1-\dfrac{P}{{{P}^{\circ }}}=\dfrac{\dfrac{1}{3}}{\dfrac{1}{3}+\dfrac{2}{3}}\]
\[\Rightarrow 1-\dfrac{1}{3}=\dfrac{2}{3}\]
Hence, we can conclude that the correct option is (a) that the vapour pressure of the solution relative to that of water is $\dfrac{2}{3}$.
Additional information:
We will now see how some factors affects the vapour pressure:
- It is observed that as the temperature of the liquid is increased then the vapour pressure also increases.
\[Vapour\text{ }pressure\text{ }\propto \text{ }Temperature\]
- We can also see that the vapour pressure is hardly influenced by any changes in pressure.
Note
- The given question is an example of an ideal solution, that is the solution which obeys Raoult’s law. There are several other examples of ideal solutions that obeys this law are Toluene and Benzene, Ethyl iodide and Ethyl Bromide.
Recently Updated Pages
JEE Main 2021 July 25 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 20 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key
JEE Main 2023 (January 30th Shift 1) Physics Question Paper with Answer Key
JEE Main 2023 (January 25th Shift 1) Physics Question Paper with Answer Key
Trending doubts
JEE Main Chemistry Question Paper with Answer Keys and Solutions
Average and RMS Value for JEE Main
Inductive Effect and Acidic Strength - Types, Relation and Applications for JEE
Collision - Important Concepts and Tips for JEE
Displacement-Time Graph and Velocity-Time Graph for JEE
The electronic configuration of bivalent europium and class 11 chemistry JEE_Main
Other Pages
Semicircular Ring - Centre of Mass and Its Application for JEE
JEE Advanced 2024 Syllabus Weightage
JEE Advanced 2025 Revision Notes for Practical Organic Chemistry
A system works in a cyclic process It absorbs 20 calories class 11 chemistry JEE_Main
JEE Advanced 2025 Notes
JEE Main 2022 June 25 Shift 1 Question Paper with Answer Keys & Solutions