Answer
Verified
110.7k+ views
Hint: The hybridization of a molecule decides its bond angle. Here, we will understand the bond angles shown by \[s{p^3}\], \[s{p^2}\] , \[sp\] and \[{d^2}s{p^3}\]hybridized molecule. The bond angle also determines molecular shape.
Complete step by step solution:Let’s first understand what hybridization is. This is the process of intermixing of orbitals to give a new group of orbitals possessing different shapes and energies.
Now, we will understand the bond angles of all the hybridized molecules.
The \[{d^2}s{p^3}\]hybridization means six electron groups surround the central atom. The surrounding groups are atoms bonded to the central atom and the count of lone pairs. So, its bond angle is \[90^\circ \]. For example, \[{\rm{S}}{{\rm{F}}_{\rm{6}}}\] is \[{d^2}s{p^3}\]hybridized.
The \[s{p^3}\] hybridized molecule has four electron groups surrounding the central atom. So, the bond angle in this hybridized molecule is \[109^\circ 28'\] . For example, \[{\rm{C}}{{\rm{H}}_{\rm{4}}}\] is \[s{p^3}\] hybridized.
The \[s{p^2}\] hybridized molecule has three electron groups surrounding the central atom. So, the bond angle in this hybridized molecule is \[120^\circ \] . For example, \[{\rm{B}}{{\rm{F}}_{\rm{4}}}\] is \[s{p^3}\] hybridized.
An \[sp\] hybridize molecule has two electron groups surrounding the central atom. So, the bond angle in an sp hybridized molecule is \[180^\circ \] . The carbon dioxide molecule is an \[sp\] hybridized molecule.
Therefore, option C is right.
Note: The hybridization also tells the geometry and shape of a molecule. If no lone pair is present, the \[s{p^3}\] hybridization denotes a tetrahedral molecule, the \[s{p^2}\] hybridization is for a trigonal planar and an \[sp\] hybridization denotes a linear molecule and the \[{d^2}s{p^3}\]hybridization is for an octahedral molecule. But, the presence of lone pairs alters the shapes of molecules.
Complete step by step solution:Let’s first understand what hybridization is. This is the process of intermixing of orbitals to give a new group of orbitals possessing different shapes and energies.
Now, we will understand the bond angles of all the hybridized molecules.
The \[{d^2}s{p^3}\]hybridization means six electron groups surround the central atom. The surrounding groups are atoms bonded to the central atom and the count of lone pairs. So, its bond angle is \[90^\circ \]. For example, \[{\rm{S}}{{\rm{F}}_{\rm{6}}}\] is \[{d^2}s{p^3}\]hybridized.
The \[s{p^3}\] hybridized molecule has four electron groups surrounding the central atom. So, the bond angle in this hybridized molecule is \[109^\circ 28'\] . For example, \[{\rm{C}}{{\rm{H}}_{\rm{4}}}\] is \[s{p^3}\] hybridized.
The \[s{p^2}\] hybridized molecule has three electron groups surrounding the central atom. So, the bond angle in this hybridized molecule is \[120^\circ \] . For example, \[{\rm{B}}{{\rm{F}}_{\rm{4}}}\] is \[s{p^3}\] hybridized.
An \[sp\] hybridize molecule has two electron groups surrounding the central atom. So, the bond angle in an sp hybridized molecule is \[180^\circ \] . The carbon dioxide molecule is an \[sp\] hybridized molecule.
Therefore, option C is right.
Note: The hybridization also tells the geometry and shape of a molecule. If no lone pair is present, the \[s{p^3}\] hybridization denotes a tetrahedral molecule, the \[s{p^2}\] hybridization is for a trigonal planar and an \[sp\] hybridization denotes a linear molecule and the \[{d^2}s{p^3}\]hybridization is for an octahedral molecule. But, the presence of lone pairs alters the shapes of molecules.
Recently Updated Pages
Write an article on the need and importance of sports class 10 english JEE_Main
Write a composition in approximately 450 500 words class 10 english JEE_Main
Arrange the sentences P Q R between S1 and S5 such class 10 english JEE_Main
If x2 hx 21 0x2 3hx + 35 0h 0 has a common root then class 10 maths JEE_Main
The radius of a sector is 12 cm and the angle is 120circ class 10 maths JEE_Main
For what value of x function fleft x right x4 4x3 + class 10 maths JEE_Main