Answer
Verified
110.7k+ views
Hint: Equation of chord joint two points \[\left( at_{1}^{2},2a{{t}_{1}} \right)\] and \[\left( at_{2}^{2},2a{{t}_{2}} \right)\] on a parabola is given as
\[\left( {{t}_{1}}+{{t}_{2}} \right)y=2x+2a{{t}_{1}}{{t}_{2}}\] , where \[{{t}_{1}}\] and \[{{t}_{2}}\] are parameters.
And , the equation of chord of parabola \[{{y}^{2}}=4ax\] with respect to pole \[(p,q)\] is given as \[yq=2a\left( x+p \right)\].
We will consider the equation of the parabola to be \[{{y}^{2}}=4ax\]
Now, we are asked to find the locus of the poles.
So , we will consider the pole to be \[A\left( {{x}_{1}},{{y}_{1}} \right)\].
Let us take the point of contact of chord as \[M\left( at_{1}^{2},2a{{t}_{1}} \right)\] and \[N\left( at_{2}^{2},2a{{t}_{2}} \right)\] , where \[{{t}_{1}}\] and \[{{t}_{2}}\] are parameters.
Now , we need to find the equation of chord.
We know , the equation of chord of parabola \[{{y}^{2}}=4ax\] with respect to pole \[(p,q)\] is given as \[yq=2a\left( x+p \right)\].
So , the equation of chord with respect to \[A\]is \[y{{y}_{1}}=2a\left( x+{{x}_{1}} \right)....\left( i \right)\]
Now , we also know that the equation of chord joining the points \[(at_{1}^{2},2a{{t}_{1}})\] and \[(at_{2}^{2},2a{{t}_{2}})\] is given as \[\left( {{t}_{1}}+{{t}_{2}} \right)y=2x+2a{{t}_{1}}{{t}_{2}}\]
So , the equation of chord joining \[M.N\] is \[\left( {{t}_{1}}+{{t}_{2}} \right)y=2x+2a{{t}_{1}}{{t}_{2}}....\left( ii \right)\]
Now, we know both these chords are the same.
We also know that if two equations \[{{a}_{1}}x+{{b}_{1}}y+{{c}_{1}}=0\] and \[{{a}_{2}}x+{{b}_{2}}y+{{c}_{2}}=0\]are same then , \[\dfrac{{{a}_{1}}}{{{a}_{2}}}=\dfrac{{{b}_{1}}}{{{b}_{2}}}=\dfrac{{{c}_{1}}}{{{c}_{2}}}\]
So , \[\dfrac{\text{coefficient of }x\text{ in eqn }(i)}{\text{coefficient of }x\text{ in eqn }(ii)}=\dfrac{\text{coefficient of }y\text{ in eqn }(i)}{\text{coefficient of }y\text{ in eqn }(ii)}=\dfrac{\text{constant in }(i)}{\text{constant in }(ii)}\]
Or , \[\dfrac{2a}{2}=\dfrac{-{{y}_{1}}}{-\left( {{t}_{1}}+{{t}_{2}} \right)}=\dfrac{2a{{x}_{1}}}{2a{{t}_{1}}{{t}_{2}}}\]
\[\Rightarrow \left( {{t}_{1}}+{{t}_{2}} \right)=\dfrac{{{y}_{1}}}{a}....\left( iii \right)\]
and \[{{t}_{1}}{{t}_{2}}=\dfrac{{{x}_{1}}}{a}....\left( iv \right)\]
Now , the chords subtend a right angle at \[\left( h,k \right)\].
We know , if two lines are perpendicular , then the product of their slopes \[=-1\].
So, the product of slopes of the lines joining the extremities of the chord and \[\left( h,k \right)\]\[=-1\].
Now , we know , the slope of the line joining two points \[({{x}_{1}},{{y}_{1}})\] and \[({{x}_{2}},{{y}_{2}})\] is given as \[m=\dfrac{{{y}_{2}}-{{y}_{1}}}{{{x}_{2}}-{{x}_{1}}}\].
So, \[\dfrac{k-2a{{t}_{1}}}{h-at_{1}^{2}}\times \dfrac{k-2a{{t}_{2}}}{h-at_{2}^{2}}=-1\]
\[\Rightarrow {{k}^{2}}-2ak\left( {{t}_{1}}+{{t}_{2}} \right)+4{{a}^{2}}{{t}_{1}}{{t}_{2}}=-\left[ {{h}^{2}}-ah\left( t_{1}^{2}+t_{2}^{2} \right)+{{a}^{2}}t_{1}^{2}t_{2}^{2} \right]\]
\[\Rightarrow {{k}^{2}}-2ak\left( {{t}_{1}}+{{t}_{2}} \right)+4{{a}^{2}}{{t}_{1}}{{t}_{2}}=-\left[ {{h}^{2}}-ah\left( {{\left( {{t}_{1}}+{{t}_{2}} \right)}^{2}}-2{{t}_{1}}{{t}_{2}} \right)+{{a}^{2}}t_{1}^{2}t_{2}^{2} \right]....\left( v \right)\]
Now substituting \[\left( iii \right)\]and \[\left( iv \right)\] in equation \[\left( v \right)\] we get,
\[{{k}^{2}}-2ak.\dfrac{{{y}_{1}}}{a}+4{{a}^{2}}\dfrac{{{x}_{1}}}{a}=-\left[ {{h}^{2}}-ah\left( {{\left( \dfrac{{{y}_{1}}}{a} \right)}^{2}}-2\dfrac{{{x}_{1}}}{a} \right)+{{a}^{2}}{{\left( \dfrac{{{x}_{1}}}{a} \right)}^{2}} \right]\]
\[\Rightarrow {{k}^{2}}-2k{{y}_{1}}+4{{x}_{1}}a=-\left[ {{h}^{2}}-\dfrac{h}{a}\left( y_{1}^{2}-2a{{x}_{1}} \right)+x_{1}^{2} \right]\]
\[\Rightarrow a{{k}^{2}}-2ak{{y}_{1}}+4{{a}^{2}}{{x}_{1}}=-a{{h}^{2}}+hy_{1}^{2}-2ah{{x}_{1}}-ax_{1}^{2}\]
\[\Rightarrow ax_{1}^{2}-hy_{1}^{2}+\left( 4{{a}^{2}}+2ah \right){{x}_{1}}-2ak{{y}_{1}}+a\left( {{k}^{2}}+{{h}^{2}} \right)=0.......\] equation\[(vi)\]
Now, to find the locus of \[A\left( {{x}_{1}},{{y}_{1}} \right)\], we will substitute \[(x,y)\]in place of \[\left( {{x}_{1}},{{y}_{1}} \right)\] in equation \[(vi)\]
So, the equation of locus of \[A\left( {{x}_{1}},{{y}_{1}} \right)\] is given as
\[a{{x}^{2}}-h{{y}^{2}}+\left( 4{{a}^{2}}+2ah \right)x-2aky+a\left( {{k}^{2}}+{{h}^{2}} \right)=0\]
Note: : While simplifying the equations , please make sure that sign mistakes do not occur. These mistakes are very common and can cause confusions while solving. Ultimately the answer becomes wrong. So, sign conventions should be carefully taken .
\[\left( {{t}_{1}}+{{t}_{2}} \right)y=2x+2a{{t}_{1}}{{t}_{2}}\] , where \[{{t}_{1}}\] and \[{{t}_{2}}\] are parameters.
And , the equation of chord of parabola \[{{y}^{2}}=4ax\] with respect to pole \[(p,q)\] is given as \[yq=2a\left( x+p \right)\].
We will consider the equation of the parabola to be \[{{y}^{2}}=4ax\]
Now, we are asked to find the locus of the poles.
So , we will consider the pole to be \[A\left( {{x}_{1}},{{y}_{1}} \right)\].
Let us take the point of contact of chord as \[M\left( at_{1}^{2},2a{{t}_{1}} \right)\] and \[N\left( at_{2}^{2},2a{{t}_{2}} \right)\] , where \[{{t}_{1}}\] and \[{{t}_{2}}\] are parameters.
Now , we need to find the equation of chord.
We know , the equation of chord of parabola \[{{y}^{2}}=4ax\] with respect to pole \[(p,q)\] is given as \[yq=2a\left( x+p \right)\].
So , the equation of chord with respect to \[A\]is \[y{{y}_{1}}=2a\left( x+{{x}_{1}} \right)....\left( i \right)\]
Now , we also know that the equation of chord joining the points \[(at_{1}^{2},2a{{t}_{1}})\] and \[(at_{2}^{2},2a{{t}_{2}})\] is given as \[\left( {{t}_{1}}+{{t}_{2}} \right)y=2x+2a{{t}_{1}}{{t}_{2}}\]
So , the equation of chord joining \[M.N\] is \[\left( {{t}_{1}}+{{t}_{2}} \right)y=2x+2a{{t}_{1}}{{t}_{2}}....\left( ii \right)\]
Now, we know both these chords are the same.
We also know that if two equations \[{{a}_{1}}x+{{b}_{1}}y+{{c}_{1}}=0\] and \[{{a}_{2}}x+{{b}_{2}}y+{{c}_{2}}=0\]are same then , \[\dfrac{{{a}_{1}}}{{{a}_{2}}}=\dfrac{{{b}_{1}}}{{{b}_{2}}}=\dfrac{{{c}_{1}}}{{{c}_{2}}}\]
So , \[\dfrac{\text{coefficient of }x\text{ in eqn }(i)}{\text{coefficient of }x\text{ in eqn }(ii)}=\dfrac{\text{coefficient of }y\text{ in eqn }(i)}{\text{coefficient of }y\text{ in eqn }(ii)}=\dfrac{\text{constant in }(i)}{\text{constant in }(ii)}\]
Or , \[\dfrac{2a}{2}=\dfrac{-{{y}_{1}}}{-\left( {{t}_{1}}+{{t}_{2}} \right)}=\dfrac{2a{{x}_{1}}}{2a{{t}_{1}}{{t}_{2}}}\]
\[\Rightarrow \left( {{t}_{1}}+{{t}_{2}} \right)=\dfrac{{{y}_{1}}}{a}....\left( iii \right)\]
and \[{{t}_{1}}{{t}_{2}}=\dfrac{{{x}_{1}}}{a}....\left( iv \right)\]
Now , the chords subtend a right angle at \[\left( h,k \right)\].
We know , if two lines are perpendicular , then the product of their slopes \[=-1\].
So, the product of slopes of the lines joining the extremities of the chord and \[\left( h,k \right)\]\[=-1\].
Now , we know , the slope of the line joining two points \[({{x}_{1}},{{y}_{1}})\] and \[({{x}_{2}},{{y}_{2}})\] is given as \[m=\dfrac{{{y}_{2}}-{{y}_{1}}}{{{x}_{2}}-{{x}_{1}}}\].
So, \[\dfrac{k-2a{{t}_{1}}}{h-at_{1}^{2}}\times \dfrac{k-2a{{t}_{2}}}{h-at_{2}^{2}}=-1\]
\[\Rightarrow {{k}^{2}}-2ak\left( {{t}_{1}}+{{t}_{2}} \right)+4{{a}^{2}}{{t}_{1}}{{t}_{2}}=-\left[ {{h}^{2}}-ah\left( t_{1}^{2}+t_{2}^{2} \right)+{{a}^{2}}t_{1}^{2}t_{2}^{2} \right]\]
\[\Rightarrow {{k}^{2}}-2ak\left( {{t}_{1}}+{{t}_{2}} \right)+4{{a}^{2}}{{t}_{1}}{{t}_{2}}=-\left[ {{h}^{2}}-ah\left( {{\left( {{t}_{1}}+{{t}_{2}} \right)}^{2}}-2{{t}_{1}}{{t}_{2}} \right)+{{a}^{2}}t_{1}^{2}t_{2}^{2} \right]....\left( v \right)\]
Now substituting \[\left( iii \right)\]and \[\left( iv \right)\] in equation \[\left( v \right)\] we get,
\[{{k}^{2}}-2ak.\dfrac{{{y}_{1}}}{a}+4{{a}^{2}}\dfrac{{{x}_{1}}}{a}=-\left[ {{h}^{2}}-ah\left( {{\left( \dfrac{{{y}_{1}}}{a} \right)}^{2}}-2\dfrac{{{x}_{1}}}{a} \right)+{{a}^{2}}{{\left( \dfrac{{{x}_{1}}}{a} \right)}^{2}} \right]\]
\[\Rightarrow {{k}^{2}}-2k{{y}_{1}}+4{{x}_{1}}a=-\left[ {{h}^{2}}-\dfrac{h}{a}\left( y_{1}^{2}-2a{{x}_{1}} \right)+x_{1}^{2} \right]\]
\[\Rightarrow a{{k}^{2}}-2ak{{y}_{1}}+4{{a}^{2}}{{x}_{1}}=-a{{h}^{2}}+hy_{1}^{2}-2ah{{x}_{1}}-ax_{1}^{2}\]
\[\Rightarrow ax_{1}^{2}-hy_{1}^{2}+\left( 4{{a}^{2}}+2ah \right){{x}_{1}}-2ak{{y}_{1}}+a\left( {{k}^{2}}+{{h}^{2}} \right)=0.......\] equation\[(vi)\]
Now, to find the locus of \[A\left( {{x}_{1}},{{y}_{1}} \right)\], we will substitute \[(x,y)\]in place of \[\left( {{x}_{1}},{{y}_{1}} \right)\] in equation \[(vi)\]
So, the equation of locus of \[A\left( {{x}_{1}},{{y}_{1}} \right)\] is given as
\[a{{x}^{2}}-h{{y}^{2}}+\left( 4{{a}^{2}}+2ah \right)x-2aky+a\left( {{k}^{2}}+{{h}^{2}} \right)=0\]
Note: : While simplifying the equations , please make sure that sign mistakes do not occur. These mistakes are very common and can cause confusions while solving. Ultimately the answer becomes wrong. So, sign conventions should be carefully taken .
Recently Updated Pages
Write an article on the need and importance of sports class 10 english JEE_Main
Write a composition in approximately 450 500 words class 10 english JEE_Main
Arrange the sentences P Q R between S1 and S5 such class 10 english JEE_Main
If x2 hx 21 0x2 3hx + 35 0h 0 has a common root then class 10 maths JEE_Main
The radius of a sector is 12 cm and the angle is 120circ class 10 maths JEE_Main
For what value of x function fleft x right x4 4x3 + class 10 maths JEE_Main
Other Pages
If a wire of resistance R is stretched to double of class 12 physics JEE_Main
Excluding stoppages the speed of a bus is 54 kmph and class 11 maths JEE_Main
Electric field due to uniformly charged sphere class 12 physics JEE_Main
In Searles apparatus when the experimental wire is class 11 physics JEE_Main
The energy stored is a condenser is in the form of class 12 physics JEE_Main