
Prove that the locus of the poles of chords which subtend a right angle at a fixed point \[\left( h,k \right)\] is \[a{{x}^{2}}-h{{y}^{2}}+\left( 4{{a}^{2}}+2ah \right)x-2aky+a\left( {{h}^{2}}+{{k}^{2}} \right)=0\]
Answer
233.1k+ views
Hint: Equation of chord joint two points \[\left( at_{1}^{2},2a{{t}_{1}} \right)\] and \[\left( at_{2}^{2},2a{{t}_{2}} \right)\] on a parabola is given as
\[\left( {{t}_{1}}+{{t}_{2}} \right)y=2x+2a{{t}_{1}}{{t}_{2}}\] , where \[{{t}_{1}}\] and \[{{t}_{2}}\] are parameters.
And , the equation of chord of parabola \[{{y}^{2}}=4ax\] with respect to pole \[(p,q)\] is given as \[yq=2a\left( x+p \right)\].
We will consider the equation of the parabola to be \[{{y}^{2}}=4ax\]
Now, we are asked to find the locus of the poles.
So , we will consider the pole to be \[A\left( {{x}_{1}},{{y}_{1}} \right)\].
Let us take the point of contact of chord as \[M\left( at_{1}^{2},2a{{t}_{1}} \right)\] and \[N\left( at_{2}^{2},2a{{t}_{2}} \right)\] , where \[{{t}_{1}}\] and \[{{t}_{2}}\] are parameters.
Now , we need to find the equation of chord.
We know , the equation of chord of parabola \[{{y}^{2}}=4ax\] with respect to pole \[(p,q)\] is given as \[yq=2a\left( x+p \right)\].

So , the equation of chord with respect to \[A\]is \[y{{y}_{1}}=2a\left( x+{{x}_{1}} \right)....\left( i \right)\]
Now , we also know that the equation of chord joining the points \[(at_{1}^{2},2a{{t}_{1}})\] and \[(at_{2}^{2},2a{{t}_{2}})\] is given as \[\left( {{t}_{1}}+{{t}_{2}} \right)y=2x+2a{{t}_{1}}{{t}_{2}}\]
So , the equation of chord joining \[M.N\] is \[\left( {{t}_{1}}+{{t}_{2}} \right)y=2x+2a{{t}_{1}}{{t}_{2}}....\left( ii \right)\]
Now, we know both these chords are the same.
We also know that if two equations \[{{a}_{1}}x+{{b}_{1}}y+{{c}_{1}}=0\] and \[{{a}_{2}}x+{{b}_{2}}y+{{c}_{2}}=0\]are same then , \[\dfrac{{{a}_{1}}}{{{a}_{2}}}=\dfrac{{{b}_{1}}}{{{b}_{2}}}=\dfrac{{{c}_{1}}}{{{c}_{2}}}\]
So , \[\dfrac{\text{coefficient of }x\text{ in eqn }(i)}{\text{coefficient of }x\text{ in eqn }(ii)}=\dfrac{\text{coefficient of }y\text{ in eqn }(i)}{\text{coefficient of }y\text{ in eqn }(ii)}=\dfrac{\text{constant in }(i)}{\text{constant in }(ii)}\]
Or , \[\dfrac{2a}{2}=\dfrac{-{{y}_{1}}}{-\left( {{t}_{1}}+{{t}_{2}} \right)}=\dfrac{2a{{x}_{1}}}{2a{{t}_{1}}{{t}_{2}}}\]
\[\Rightarrow \left( {{t}_{1}}+{{t}_{2}} \right)=\dfrac{{{y}_{1}}}{a}....\left( iii \right)\]
and \[{{t}_{1}}{{t}_{2}}=\dfrac{{{x}_{1}}}{a}....\left( iv \right)\]
Now , the chords subtend a right angle at \[\left( h,k \right)\].
We know , if two lines are perpendicular , then the product of their slopes \[=-1\].
So, the product of slopes of the lines joining the extremities of the chord and \[\left( h,k \right)\]\[=-1\].
Now , we know , the slope of the line joining two points \[({{x}_{1}},{{y}_{1}})\] and \[({{x}_{2}},{{y}_{2}})\] is given as \[m=\dfrac{{{y}_{2}}-{{y}_{1}}}{{{x}_{2}}-{{x}_{1}}}\].
So, \[\dfrac{k-2a{{t}_{1}}}{h-at_{1}^{2}}\times \dfrac{k-2a{{t}_{2}}}{h-at_{2}^{2}}=-1\]
\[\Rightarrow {{k}^{2}}-2ak\left( {{t}_{1}}+{{t}_{2}} \right)+4{{a}^{2}}{{t}_{1}}{{t}_{2}}=-\left[ {{h}^{2}}-ah\left( t_{1}^{2}+t_{2}^{2} \right)+{{a}^{2}}t_{1}^{2}t_{2}^{2} \right]\]
\[\Rightarrow {{k}^{2}}-2ak\left( {{t}_{1}}+{{t}_{2}} \right)+4{{a}^{2}}{{t}_{1}}{{t}_{2}}=-\left[ {{h}^{2}}-ah\left( {{\left( {{t}_{1}}+{{t}_{2}} \right)}^{2}}-2{{t}_{1}}{{t}_{2}} \right)+{{a}^{2}}t_{1}^{2}t_{2}^{2} \right]....\left( v \right)\]
Now substituting \[\left( iii \right)\]and \[\left( iv \right)\] in equation \[\left( v \right)\] we get,
\[{{k}^{2}}-2ak.\dfrac{{{y}_{1}}}{a}+4{{a}^{2}}\dfrac{{{x}_{1}}}{a}=-\left[ {{h}^{2}}-ah\left( {{\left( \dfrac{{{y}_{1}}}{a} \right)}^{2}}-2\dfrac{{{x}_{1}}}{a} \right)+{{a}^{2}}{{\left( \dfrac{{{x}_{1}}}{a} \right)}^{2}} \right]\]
\[\Rightarrow {{k}^{2}}-2k{{y}_{1}}+4{{x}_{1}}a=-\left[ {{h}^{2}}-\dfrac{h}{a}\left( y_{1}^{2}-2a{{x}_{1}} \right)+x_{1}^{2} \right]\]
\[\Rightarrow a{{k}^{2}}-2ak{{y}_{1}}+4{{a}^{2}}{{x}_{1}}=-a{{h}^{2}}+hy_{1}^{2}-2ah{{x}_{1}}-ax_{1}^{2}\]
\[\Rightarrow ax_{1}^{2}-hy_{1}^{2}+\left( 4{{a}^{2}}+2ah \right){{x}_{1}}-2ak{{y}_{1}}+a\left( {{k}^{2}}+{{h}^{2}} \right)=0.......\] equation\[(vi)\]
Now, to find the locus of \[A\left( {{x}_{1}},{{y}_{1}} \right)\], we will substitute \[(x,y)\]in place of \[\left( {{x}_{1}},{{y}_{1}} \right)\] in equation \[(vi)\]
So, the equation of locus of \[A\left( {{x}_{1}},{{y}_{1}} \right)\] is given as
\[a{{x}^{2}}-h{{y}^{2}}+\left( 4{{a}^{2}}+2ah \right)x-2aky+a\left( {{k}^{2}}+{{h}^{2}} \right)=0\]
Note: : While simplifying the equations , please make sure that sign mistakes do not occur. These mistakes are very common and can cause confusions while solving. Ultimately the answer becomes wrong. So, sign conventions should be carefully taken .
\[\left( {{t}_{1}}+{{t}_{2}} \right)y=2x+2a{{t}_{1}}{{t}_{2}}\] , where \[{{t}_{1}}\] and \[{{t}_{2}}\] are parameters.
And , the equation of chord of parabola \[{{y}^{2}}=4ax\] with respect to pole \[(p,q)\] is given as \[yq=2a\left( x+p \right)\].
We will consider the equation of the parabola to be \[{{y}^{2}}=4ax\]
Now, we are asked to find the locus of the poles.
So , we will consider the pole to be \[A\left( {{x}_{1}},{{y}_{1}} \right)\].
Let us take the point of contact of chord as \[M\left( at_{1}^{2},2a{{t}_{1}} \right)\] and \[N\left( at_{2}^{2},2a{{t}_{2}} \right)\] , where \[{{t}_{1}}\] and \[{{t}_{2}}\] are parameters.
Now , we need to find the equation of chord.
We know , the equation of chord of parabola \[{{y}^{2}}=4ax\] with respect to pole \[(p,q)\] is given as \[yq=2a\left( x+p \right)\].

So , the equation of chord with respect to \[A\]is \[y{{y}_{1}}=2a\left( x+{{x}_{1}} \right)....\left( i \right)\]
Now , we also know that the equation of chord joining the points \[(at_{1}^{2},2a{{t}_{1}})\] and \[(at_{2}^{2},2a{{t}_{2}})\] is given as \[\left( {{t}_{1}}+{{t}_{2}} \right)y=2x+2a{{t}_{1}}{{t}_{2}}\]
So , the equation of chord joining \[M.N\] is \[\left( {{t}_{1}}+{{t}_{2}} \right)y=2x+2a{{t}_{1}}{{t}_{2}}....\left( ii \right)\]
Now, we know both these chords are the same.
We also know that if two equations \[{{a}_{1}}x+{{b}_{1}}y+{{c}_{1}}=0\] and \[{{a}_{2}}x+{{b}_{2}}y+{{c}_{2}}=0\]are same then , \[\dfrac{{{a}_{1}}}{{{a}_{2}}}=\dfrac{{{b}_{1}}}{{{b}_{2}}}=\dfrac{{{c}_{1}}}{{{c}_{2}}}\]
So , \[\dfrac{\text{coefficient of }x\text{ in eqn }(i)}{\text{coefficient of }x\text{ in eqn }(ii)}=\dfrac{\text{coefficient of }y\text{ in eqn }(i)}{\text{coefficient of }y\text{ in eqn }(ii)}=\dfrac{\text{constant in }(i)}{\text{constant in }(ii)}\]
Or , \[\dfrac{2a}{2}=\dfrac{-{{y}_{1}}}{-\left( {{t}_{1}}+{{t}_{2}} \right)}=\dfrac{2a{{x}_{1}}}{2a{{t}_{1}}{{t}_{2}}}\]
\[\Rightarrow \left( {{t}_{1}}+{{t}_{2}} \right)=\dfrac{{{y}_{1}}}{a}....\left( iii \right)\]
and \[{{t}_{1}}{{t}_{2}}=\dfrac{{{x}_{1}}}{a}....\left( iv \right)\]
Now , the chords subtend a right angle at \[\left( h,k \right)\].
We know , if two lines are perpendicular , then the product of their slopes \[=-1\].
So, the product of slopes of the lines joining the extremities of the chord and \[\left( h,k \right)\]\[=-1\].
Now , we know , the slope of the line joining two points \[({{x}_{1}},{{y}_{1}})\] and \[({{x}_{2}},{{y}_{2}})\] is given as \[m=\dfrac{{{y}_{2}}-{{y}_{1}}}{{{x}_{2}}-{{x}_{1}}}\].
So, \[\dfrac{k-2a{{t}_{1}}}{h-at_{1}^{2}}\times \dfrac{k-2a{{t}_{2}}}{h-at_{2}^{2}}=-1\]
\[\Rightarrow {{k}^{2}}-2ak\left( {{t}_{1}}+{{t}_{2}} \right)+4{{a}^{2}}{{t}_{1}}{{t}_{2}}=-\left[ {{h}^{2}}-ah\left( t_{1}^{2}+t_{2}^{2} \right)+{{a}^{2}}t_{1}^{2}t_{2}^{2} \right]\]
\[\Rightarrow {{k}^{2}}-2ak\left( {{t}_{1}}+{{t}_{2}} \right)+4{{a}^{2}}{{t}_{1}}{{t}_{2}}=-\left[ {{h}^{2}}-ah\left( {{\left( {{t}_{1}}+{{t}_{2}} \right)}^{2}}-2{{t}_{1}}{{t}_{2}} \right)+{{a}^{2}}t_{1}^{2}t_{2}^{2} \right]....\left( v \right)\]
Now substituting \[\left( iii \right)\]and \[\left( iv \right)\] in equation \[\left( v \right)\] we get,
\[{{k}^{2}}-2ak.\dfrac{{{y}_{1}}}{a}+4{{a}^{2}}\dfrac{{{x}_{1}}}{a}=-\left[ {{h}^{2}}-ah\left( {{\left( \dfrac{{{y}_{1}}}{a} \right)}^{2}}-2\dfrac{{{x}_{1}}}{a} \right)+{{a}^{2}}{{\left( \dfrac{{{x}_{1}}}{a} \right)}^{2}} \right]\]
\[\Rightarrow {{k}^{2}}-2k{{y}_{1}}+4{{x}_{1}}a=-\left[ {{h}^{2}}-\dfrac{h}{a}\left( y_{1}^{2}-2a{{x}_{1}} \right)+x_{1}^{2} \right]\]
\[\Rightarrow a{{k}^{2}}-2ak{{y}_{1}}+4{{a}^{2}}{{x}_{1}}=-a{{h}^{2}}+hy_{1}^{2}-2ah{{x}_{1}}-ax_{1}^{2}\]
\[\Rightarrow ax_{1}^{2}-hy_{1}^{2}+\left( 4{{a}^{2}}+2ah \right){{x}_{1}}-2ak{{y}_{1}}+a\left( {{k}^{2}}+{{h}^{2}} \right)=0.......\] equation\[(vi)\]
Now, to find the locus of \[A\left( {{x}_{1}},{{y}_{1}} \right)\], we will substitute \[(x,y)\]in place of \[\left( {{x}_{1}},{{y}_{1}} \right)\] in equation \[(vi)\]
So, the equation of locus of \[A\left( {{x}_{1}},{{y}_{1}} \right)\] is given as
\[a{{x}^{2}}-h{{y}^{2}}+\left( 4{{a}^{2}}+2ah \right)x-2aky+a\left( {{k}^{2}}+{{h}^{2}} \right)=0\]
Note: : While simplifying the equations , please make sure that sign mistakes do not occur. These mistakes are very common and can cause confusions while solving. Ultimately the answer becomes wrong. So, sign conventions should be carefully taken .
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding the Electric Field of a Uniformly Charged Ring

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 11 Maths Chapter 12 Limits and Derivatives (2025-26)

NCERT Solutions For Class 11 Maths Chapter 10 Conic Sections (2025-26)

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

