![SearchIcon](https://vmkt.vedantu.com/vmkt/PROD/png/bdcdbbd8-08a7-4688-98e6-4aa54e5e0800-1733305962725-4102606384256179.png)
Rays of light from Sun falls on a biconvex lens of focal length f and the circular image of Sun of radius r is formed on the focal plane of the lens. Then
A. Area of image is $πr^2$ and area is directly proportional of f
B. Area of image is $πr^2$ and area is directly proportional of $f^2$
C. Intensity of image increases if f is increased
D. If lower half of the lens is covered with black paper area will become half
Answer
125.7k+ views
Hint: In this question we will use the concept of refraction through biconvex lens and focal plane. The biconvex lens is a straightforward lens made up of two convex surfaces that are spherical in shape and typically have the same radius of curvature.
Formula used:
In a triangle, $\tan \theta =\dfrac{\text{perpendicular}}{\text{base}}$
Complete step by step solution:
Let the focus of the biconvex lens be A, the centre of the biconvex lens be C and the point diametrically opposite to A on the reflection be B. The angle at which sun rays hit the biconvex lens is α and the angle after reflection is β.
![](https://www.vedantu.com/question-sets/d6204a38-e6a5-4c76-b8a9-88e987a1b4ec1985198140273828073.png)
In triangle ABC,
$Tan\beta =\dfrac{AB}{AC}=\dfrac{2r}{f}$
$\Rightarrow r=\dfrac{f}{2}\tan \beta $
$\Rightarrow r\propto f$
$\Rightarrow {{r}^{2}}\propto {{f}^{2}}$ - (1)
Area of the image = $πr^2$ and from equation (1), it is directly proportional to $f^2$.
Hence, the correct answer is B.
Additional Information: A biconvex lens is a type of simple lens that consists of two convex surfaces that are spherical in shape and often have the same radius of curvature. They can also be referred to as convex-convex lenses. A collimated or perfectly parallel light beam travels through a biconvex lens and converges to a point or focus that is behind the lens. There will be about two focal points and two centres because the lens is curved on both sides. The principal axis is the line that passes through the centre of a biconvex lens.
Note: After refraction the angle should change and all the rays should converge at the focal point. Sun is taken to be at an infinite distance.
Formula used:
In a triangle, $\tan \theta =\dfrac{\text{perpendicular}}{\text{base}}$
Complete step by step solution:
Let the focus of the biconvex lens be A, the centre of the biconvex lens be C and the point diametrically opposite to A on the reflection be B. The angle at which sun rays hit the biconvex lens is α and the angle after reflection is β.
![](https://www.vedantu.com/question-sets/d6204a38-e6a5-4c76-b8a9-88e987a1b4ec1985198140273828073.png)
In triangle ABC,
$Tan\beta =\dfrac{AB}{AC}=\dfrac{2r}{f}$
$\Rightarrow r=\dfrac{f}{2}\tan \beta $
$\Rightarrow r\propto f$
$\Rightarrow {{r}^{2}}\propto {{f}^{2}}$ - (1)
Area of the image = $πr^2$ and from equation (1), it is directly proportional to $f^2$.
Hence, the correct answer is B.
Additional Information: A biconvex lens is a type of simple lens that consists of two convex surfaces that are spherical in shape and often have the same radius of curvature. They can also be referred to as convex-convex lenses. A collimated or perfectly parallel light beam travels through a biconvex lens and converges to a point or focus that is behind the lens. There will be about two focal points and two centres because the lens is curved on both sides. The principal axis is the line that passes through the centre of a biconvex lens.
Note: After refraction the angle should change and all the rays should converge at the focal point. Sun is taken to be at an infinite distance.
Recently Updated Pages
Wheatstone Bridge - Working Principle, Formula, Derivation, Application
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Young's Double Slit Experiment Step by Step Derivation
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Main 2023 (April 8th Shift 2) Physics Question Paper with Answer Key
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Main 2023 (January 30th Shift 2) Maths Question Paper with Answer Key
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Main 2022 (July 25th Shift 2) Physics Question Paper with Answer Key
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Classification of Elements and Periodicity in Properties Chapter For JEE Main Chemistry
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility & More
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Main Login 2045: Step-by-Step Instructions and Details
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
The formula of the kinetic mass of a photon is Where class 12 physics JEE_Main
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Main 2023 January 24 Shift 2 Question Paper with Answer Keys & Solutions
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Mains 2025 Correction Window Date (Out) – Check Procedure and Fees Here!
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Main Participating Colleges 2024 - A Complete List of Top Colleges
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Learn About Angle Of Deviation In Prism: JEE Main Physics 2025
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Dual Nature of Radiation and Matter Class 12 Notes: CBSE Physics Chapter 11
![arrow-right](/cdn/images/seo-templates/arrow-right.png)