Answer
Verified
110.7k+ views
Hint: Construct the square illustrating the four charges at each corner. Now, use the formula of potential difference for each charge and add them with each other and make them equal to zero.
Formula used The potential difference of the system for a point charge can be calculated by the formula –
$V = \dfrac{1}{{4\pi {\varepsilon _0}}}\dfrac{Q}{r}$
where, $Q$ is the charge, and
$r$ is the distance of point
Complete Step by Step Solution
According to the question, it is given that, there are four – point charges $ - Q, - q,2q$ and $2Q$ which are placed at each corner of the square. So, this can be illustrated in the figure as below –
Let the side of the square be $a$ then, the length of each corner from the center will be $\dfrac{a}{{\sqrt 2 }}$.
Now, we know that, the potential difference of the system can be given by the formula –
$V = \dfrac{1}{{4\pi {\varepsilon _0}}}\dfrac{Q}{r}$
As, $\dfrac{1}{{4\pi {\varepsilon _0}}}$ is constant. So, let $\dfrac{1}{{4\pi {\varepsilon _0}}}$ be $K$
Hence, -
$ \Rightarrow V = \dfrac{{KQ}}{r}$
Now, the potential at the centre of square from each charge can be given by –
$V = \dfrac{{K\left( { - Q} \right)}}{{\dfrac{a}{{\sqrt 2 }}}} + \dfrac{{K\left( { - q} \right)}}{{\dfrac{a}{{\sqrt 2 }}}} + \dfrac{{K\left( {2q} \right)}}{{\dfrac{a}{{\sqrt 2 }}}} + \dfrac{{K\left( {2Q} \right)}}{{\dfrac{a}{{\sqrt 2 }}}}$
As it is given in question that potential at centre of square is equal to zero. So, $V = 0$
$
\therefore \dfrac{{K\left( { - Q} \right)}}{{\dfrac{a}{{\sqrt 2 }}}} + \dfrac{{K\left( { - q} \right)}}{{\dfrac{a}{{\sqrt 2 }}}} + \dfrac{{K\left( {2q} \right)}}{{\dfrac{a}{{\sqrt 2 }}}} + \dfrac{{K\left( {2Q} \right)}}{{\dfrac{a}{{\sqrt 2 }}}} = 0 \\
\Rightarrow - KQ - Kq + 2Kq + 2Kq = 0 \\
\Rightarrow Kq + KQ = 0 \\
\therefore Q = - q \\
$
Now, we got the relation between the charges $Q$ and $q$ as $Q = - q$.
Hence, the correct option is (C).
Note: Potential difference between two points is the work done in moving a unit positive charge between the two points. Its S.I unit is V.
The diagonal of the square can be calculated by multiplying the side of the square with $\sqrt 2 $. So, the length of each corner from the centre of square will be –
$
\Rightarrow \dfrac{{a\sqrt 2 }}{2} \\
\therefore \dfrac{a}{{\sqrt 2 }} \\
$
$\dfrac{a}{{\sqrt 2 }}$ is equal to the half of the diagonal of the square.
Formula used The potential difference of the system for a point charge can be calculated by the formula –
$V = \dfrac{1}{{4\pi {\varepsilon _0}}}\dfrac{Q}{r}$
where, $Q$ is the charge, and
$r$ is the distance of point
Complete Step by Step Solution
According to the question, it is given that, there are four – point charges $ - Q, - q,2q$ and $2Q$ which are placed at each corner of the square. So, this can be illustrated in the figure as below –
Let the side of the square be $a$ then, the length of each corner from the center will be $\dfrac{a}{{\sqrt 2 }}$.
Now, we know that, the potential difference of the system can be given by the formula –
$V = \dfrac{1}{{4\pi {\varepsilon _0}}}\dfrac{Q}{r}$
As, $\dfrac{1}{{4\pi {\varepsilon _0}}}$ is constant. So, let $\dfrac{1}{{4\pi {\varepsilon _0}}}$ be $K$
Hence, -
$ \Rightarrow V = \dfrac{{KQ}}{r}$
Now, the potential at the centre of square from each charge can be given by –
$V = \dfrac{{K\left( { - Q} \right)}}{{\dfrac{a}{{\sqrt 2 }}}} + \dfrac{{K\left( { - q} \right)}}{{\dfrac{a}{{\sqrt 2 }}}} + \dfrac{{K\left( {2q} \right)}}{{\dfrac{a}{{\sqrt 2 }}}} + \dfrac{{K\left( {2Q} \right)}}{{\dfrac{a}{{\sqrt 2 }}}}$
As it is given in question that potential at centre of square is equal to zero. So, $V = 0$
$
\therefore \dfrac{{K\left( { - Q} \right)}}{{\dfrac{a}{{\sqrt 2 }}}} + \dfrac{{K\left( { - q} \right)}}{{\dfrac{a}{{\sqrt 2 }}}} + \dfrac{{K\left( {2q} \right)}}{{\dfrac{a}{{\sqrt 2 }}}} + \dfrac{{K\left( {2Q} \right)}}{{\dfrac{a}{{\sqrt 2 }}}} = 0 \\
\Rightarrow - KQ - Kq + 2Kq + 2Kq = 0 \\
\Rightarrow Kq + KQ = 0 \\
\therefore Q = - q \\
$
Now, we got the relation between the charges $Q$ and $q$ as $Q = - q$.
Hence, the correct option is (C).
Note: Potential difference between two points is the work done in moving a unit positive charge between the two points. Its S.I unit is V.
The diagonal of the square can be calculated by multiplying the side of the square with $\sqrt 2 $. So, the length of each corner from the centre of square will be –
$
\Rightarrow \dfrac{{a\sqrt 2 }}{2} \\
\therefore \dfrac{a}{{\sqrt 2 }} \\
$
$\dfrac{a}{{\sqrt 2 }}$ is equal to the half of the diagonal of the square.
Recently Updated Pages
Write an article on the need and importance of sports class 10 english JEE_Main
Write a composition in approximately 450 500 words class 10 english JEE_Main
Arrange the sentences P Q R between S1 and S5 such class 10 english JEE_Main
If x2 hx 21 0x2 3hx + 35 0h 0 has a common root then class 10 maths JEE_Main
The radius of a sector is 12 cm and the angle is 120circ class 10 maths JEE_Main
For what value of x function fleft x right x4 4x3 + class 10 maths JEE_Main
Other Pages
Electric field due to uniformly charged sphere class 12 physics JEE_Main
If a wire of resistance R is stretched to double of class 12 physics JEE_Main
In Searles apparatus when the experimental wire is class 11 physics JEE_Main
The energy stored is a condenser is in the form of class 12 physics JEE_Main
Excluding stoppages the speed of a bus is 54 kmph and class 11 maths JEE_Main