Answer
Verified
110.7k+ views
Hint: We need to find the velocity of the velocity of the observer in the direction of the line joining the source and the observer. Then we need to find the velocity of source in the same direction.
Formula used: In this solution we will be using the following formulae;
\[n' = n\left( {\dfrac{{v - {v_L}}}{{v + {v_s}}}} \right)\] where \[n'\] is the frequency observed by the observer when the source and observer are moving away from each other, \[n\] is the actual frequency of the wave from the source, \[v\] is the speed of wave, \[{v_L}\] is the speed of the observer and \[{v_s}\] is the speed of the source
Complete Step-by-Step Solution:
To find the frequency observed by the observer, we must be able to calculate the actual velocity of recession of the source and observer from each other. Hence, on the line joining the observer and source the component of the velocity of each in that direction is taken as their velocity away from each other.
From the diagram, we can see that velocities in the direction of their line of sight can be give each as
\[{v_L} = {V_0}\cos \theta \] and \[{v_s} = 2{V_0}\cos \alpha \]
But from Pythagoras theorem
\[\cos \theta = \dfrac{1}{{\sqrt 5 }}\] and \[\cos \alpha = \dfrac{2}{{\sqrt 5 }}\]
Hence,
\[{v_L} = {V_0}\dfrac{1}{{\sqrt 5 }}\] and \[{v_s} = 2{V_0}\dfrac{2}{{\sqrt 5 }}\]
The frequency observed when source and observer are moving away from each other is given as
\[n' = n\left( {\dfrac{{v - {v_L}}}{{v + {v_s}}}} \right)\] where \[n\] is the actual frequency of the wave from the source, \[v\] is the speed of wave, \[{v_L}\] is the speed of the observer and \[{v_s}\] is the speed of the source.
Hence, by inserting into the equation, we have
\[n' = n\left( {\dfrac{{v - {V_0}\dfrac{1}{{\sqrt 5 }}}}{{v + 2{V_0}\dfrac{2}{{\sqrt 5 }}}}} \right) = n\left( {\dfrac{{v - \dfrac{{{V_0}}}{{\sqrt 5 }}}}{{v + \dfrac{{4{V_0}}}{{\sqrt 5 }}}}} \right)\]
Obviously, \[v + \dfrac{{4{V_0}}}{{\sqrt 5 }} > v - \dfrac{{{V_0}}}{{\sqrt 5 }}\]
Then, \[n' < n\]
And as we see, there’s no dependency on time.
Hence, the correct option is B
Note: For clarity, the values of \[\cos \theta \] and \[\cos \alpha \] can be proven as follows:
Velocity is a vector, hence can be represented as the length of the sides of the triangle as shown in the figure in the solution step. The line of sight is obviously the hypotenuse of the right angled triangle created. Hence,
\[v = \sqrt {V_0^2 + {{\left( {2{V_o}} \right)}^2}} = {V_0}\sqrt 5 \]
Now \[\cos \theta = \dfrac{{adjacent}}{{hyp}} = \dfrac{{{V_0}}}{{{V_0}\sqrt 5 }}\]
Hence,
\[\cos \theta = \dfrac{1}{{\sqrt 5 }}\]
Similarly,
\[\cos \alpha = \dfrac{2}{{\sqrt 5 }}\]
Formula used: In this solution we will be using the following formulae;
\[n' = n\left( {\dfrac{{v - {v_L}}}{{v + {v_s}}}} \right)\] where \[n'\] is the frequency observed by the observer when the source and observer are moving away from each other, \[n\] is the actual frequency of the wave from the source, \[v\] is the speed of wave, \[{v_L}\] is the speed of the observer and \[{v_s}\] is the speed of the source
Complete Step-by-Step Solution:
To find the frequency observed by the observer, we must be able to calculate the actual velocity of recession of the source and observer from each other. Hence, on the line joining the observer and source the component of the velocity of each in that direction is taken as their velocity away from each other.
From the diagram, we can see that velocities in the direction of their line of sight can be give each as
\[{v_L} = {V_0}\cos \theta \] and \[{v_s} = 2{V_0}\cos \alpha \]
But from Pythagoras theorem
\[\cos \theta = \dfrac{1}{{\sqrt 5 }}\] and \[\cos \alpha = \dfrac{2}{{\sqrt 5 }}\]
Hence,
\[{v_L} = {V_0}\dfrac{1}{{\sqrt 5 }}\] and \[{v_s} = 2{V_0}\dfrac{2}{{\sqrt 5 }}\]
The frequency observed when source and observer are moving away from each other is given as
\[n' = n\left( {\dfrac{{v - {v_L}}}{{v + {v_s}}}} \right)\] where \[n\] is the actual frequency of the wave from the source, \[v\] is the speed of wave, \[{v_L}\] is the speed of the observer and \[{v_s}\] is the speed of the source.
Hence, by inserting into the equation, we have
\[n' = n\left( {\dfrac{{v - {V_0}\dfrac{1}{{\sqrt 5 }}}}{{v + 2{V_0}\dfrac{2}{{\sqrt 5 }}}}} \right) = n\left( {\dfrac{{v - \dfrac{{{V_0}}}{{\sqrt 5 }}}}{{v + \dfrac{{4{V_0}}}{{\sqrt 5 }}}}} \right)\]
Obviously, \[v + \dfrac{{4{V_0}}}{{\sqrt 5 }} > v - \dfrac{{{V_0}}}{{\sqrt 5 }}\]
Then, \[n' < n\]
And as we see, there’s no dependency on time.
Hence, the correct option is B
Note: For clarity, the values of \[\cos \theta \] and \[\cos \alpha \] can be proven as follows:
Velocity is a vector, hence can be represented as the length of the sides of the triangle as shown in the figure in the solution step. The line of sight is obviously the hypotenuse of the right angled triangle created. Hence,
\[v = \sqrt {V_0^2 + {{\left( {2{V_o}} \right)}^2}} = {V_0}\sqrt 5 \]
Now \[\cos \theta = \dfrac{{adjacent}}{{hyp}} = \dfrac{{{V_0}}}{{{V_0}\sqrt 5 }}\]
Hence,
\[\cos \theta = \dfrac{1}{{\sqrt 5 }}\]
Similarly,
\[\cos \alpha = \dfrac{2}{{\sqrt 5 }}\]
Recently Updated Pages
Write an article on the need and importance of sports class 10 english JEE_Main
Write a composition in approximately 450 500 words class 10 english JEE_Main
Arrange the sentences P Q R between S1 and S5 such class 10 english JEE_Main
If x2 hx 21 0x2 3hx + 35 0h 0 has a common root then class 10 maths JEE_Main
The radius of a sector is 12 cm and the angle is 120circ class 10 maths JEE_Main
For what value of x function fleft x right x4 4x3 + class 10 maths JEE_Main
Other Pages
If a wire of resistance R is stretched to double of class 12 physics JEE_Main
The energy stored is a condenser is in the form of class 12 physics JEE_Main
Excluding stoppages the speed of a bus is 54 kmph and class 11 maths JEE_Main
Electric field due to uniformly charged sphere class 12 physics JEE_Main
In Searles apparatus when the experimental wire is class 11 physics JEE_Main