Sun radiates thermal radiation with maximum intensity at the wavelength $\lambda = 0.5\mu m$ while its surface temperature is $6000\,K$. If sun cools down to a temperature where it emits only $81\% $of its present power, the maximum intensity will then be emitted at wavelength $\lambda $ (in micrometer) is equal to $[\sqrt {10} = 3.1622]$.
Answer
Verified
122.7k+ views
Hint: The above problem is based on Wien's displacement law. This law explains the relationship between the maximum light wavelengths that a source can emit. The Wien's constant is the constant that results from multiplying the light's wavelength by its temperature.
Formula used:
The expression of Wien’s displacement law is,
${\lambda _{\max }}T = \text{Constant}$
Here, $\lambda _{\max }$ is the maximum value of the wavelength and $T$ is the temperature.
Complete step by step solution:
In the question the temperature of the sun is $T = 6000\,K$, maximum wavelength of radiation emitted $\lambda = 0.5\mu m$ and the sun cools to a temperature where it emits $81\% $ of present power. Let’s assume the temperature after cooling be $T'$ and the maximum wavelength emitted after cooling be $\lambda '$. As we know the energy emitted per unit time or power emitted by any body $\mu = e\sigma A{T'^4}$.
To find the temperature after cooling, compare the given information with the energy emitted per unit time, then we have:
$\dfrac{{0.81{\mu _1}}}{{{\mu _1}}} = \dfrac{{e\sigma A{{T'}^4}}}{{e\sigma A{{(6000)}^4}}} \\$
$\Rightarrow 0.81 \times {(6000)^4} = {{T'}^4} \\$
$\Rightarrow T' = \sqrt[4]{{1.0497 \times {{10}^{15}}}}K \\$
$\Rightarrow T' = 5692.099 \approx 5692.1\,K \\$
Apply the Wien’s displacement law to calculate the formula for temperature of the sun ${\lambda _{\max }}T = \text{Constant}$
We have the constant as $\lambda T = \lambda 'T'$ then substitute the given values, we obtain:
$0.5\mu m \times 6000\,K = \lambda ' \times 5692.1\,K \\$
$\Rightarrow \lambda ' = \dfrac{{0.5\mu m \times 6000\,K}}{{5692.1\,K}} \\$
$\Rightarrow \lambda ' = 0.527\mu m \\$
$\therefore \lambda ' \approx 0.53\mu m \\$
Therefore, the maximum wavelength emitted after cooling is approximately $0.53\mu m$.
Additional information: When a body is heated up, its thermal radiation becomes apparent. For shorter wavelengths, the radiation's maximum temperature can be observed. The relationship between the body's temperature and the thermal radiation's wavelength is inverse. The overall emissive power of the body is determined by the area under the curve between its wavelength and temperature.
Note: Before using the Wien's displacement law, it is necessary to convert the wavelength in metres and the temperature in Kelvin from degrees Celsius. For a shorter wavelength of light, the body emits the higher thermal radiation.
Formula used:
The expression of Wien’s displacement law is,
${\lambda _{\max }}T = \text{Constant}$
Here, $\lambda _{\max }$ is the maximum value of the wavelength and $T$ is the temperature.
Complete step by step solution:
In the question the temperature of the sun is $T = 6000\,K$, maximum wavelength of radiation emitted $\lambda = 0.5\mu m$ and the sun cools to a temperature where it emits $81\% $ of present power. Let’s assume the temperature after cooling be $T'$ and the maximum wavelength emitted after cooling be $\lambda '$. As we know the energy emitted per unit time or power emitted by any body $\mu = e\sigma A{T'^4}$.
To find the temperature after cooling, compare the given information with the energy emitted per unit time, then we have:
$\dfrac{{0.81{\mu _1}}}{{{\mu _1}}} = \dfrac{{e\sigma A{{T'}^4}}}{{e\sigma A{{(6000)}^4}}} \\$
$\Rightarrow 0.81 \times {(6000)^4} = {{T'}^4} \\$
$\Rightarrow T' = \sqrt[4]{{1.0497 \times {{10}^{15}}}}K \\$
$\Rightarrow T' = 5692.099 \approx 5692.1\,K \\$
Apply the Wien’s displacement law to calculate the formula for temperature of the sun ${\lambda _{\max }}T = \text{Constant}$
We have the constant as $\lambda T = \lambda 'T'$ then substitute the given values, we obtain:
$0.5\mu m \times 6000\,K = \lambda ' \times 5692.1\,K \\$
$\Rightarrow \lambda ' = \dfrac{{0.5\mu m \times 6000\,K}}{{5692.1\,K}} \\$
$\Rightarrow \lambda ' = 0.527\mu m \\$
$\therefore \lambda ' \approx 0.53\mu m \\$
Therefore, the maximum wavelength emitted after cooling is approximately $0.53\mu m$.
Additional information: When a body is heated up, its thermal radiation becomes apparent. For shorter wavelengths, the radiation's maximum temperature can be observed. The relationship between the body's temperature and the thermal radiation's wavelength is inverse. The overall emissive power of the body is determined by the area under the curve between its wavelength and temperature.
Note: Before using the Wien's displacement law, it is necessary to convert the wavelength in metres and the temperature in Kelvin from degrees Celsius. For a shorter wavelength of light, the body emits the higher thermal radiation.
Recently Updated Pages
The ratio of the diameters of two metallic rods of class 11 physics JEE_Main
What is the difference between Conduction and conv class 11 physics JEE_Main
Mark the correct statements about the friction between class 11 physics JEE_Main
Find the acceleration of the wedge towards the right class 11 physics JEE_Main
A standing wave is formed by the superposition of two class 11 physics JEE_Main
Derive an expression for work done by the gas in an class 11 physics JEE_Main
Trending doubts
JEE Mains 2025: Check Important Dates, Syllabus, Exam Pattern, Fee and Updates
JEE Main Login 2045: Step-by-Step Instructions and Details
Class 11 JEE Main Physics Mock Test 2025
JEE Main Chemistry Question Paper with Answer Keys and Solutions
JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking
JEE Main 2023 January 24 Shift 2 Question Paper with Answer Keys & Solutions
Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs
NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements
NCERT Solutions for Class 11 Physics Chapter 9 Mechanical Properties of Fluids
Units and Measurements Class 11 Notes: CBSE Physics Chapter 1
JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More
NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line