Answer
Verified
99.9k+ views
Hint: The above problem is based on Wien's displacement law. This law explains the relationship between the maximum light wavelengths that a source can emit. The Wien's constant is the constant that results from multiplying the light's wavelength by its temperature.
Formula used:
The expression of Wien’s displacement law is,
${\lambda _{\max }}T = \text{Constant}$
Here, $\lambda _{\max }$ is the maximum value of the wavelength and $T$ is the temperature.
Complete step by step solution:
In the question the temperature of the sun is $T = 6000\,K$, maximum wavelength of radiation emitted $\lambda = 0.5\mu m$ and the sun cools to a temperature where it emits $81\% $ of present power. Let’s assume the temperature after cooling be $T'$ and the maximum wavelength emitted after cooling be $\lambda '$. As we know the energy emitted per unit time or power emitted by any body $\mu = e\sigma A{T'^4}$.
To find the temperature after cooling, compare the given information with the energy emitted per unit time, then we have:
$\dfrac{{0.81{\mu _1}}}{{{\mu _1}}} = \dfrac{{e\sigma A{{T'}^4}}}{{e\sigma A{{(6000)}^4}}} \\$
$\Rightarrow 0.81 \times {(6000)^4} = {{T'}^4} \\$
$\Rightarrow T' = \sqrt[4]{{1.0497 \times {{10}^{15}}}}K \\$
$\Rightarrow T' = 5692.099 \approx 5692.1\,K \\$
Apply the Wien’s displacement law to calculate the formula for temperature of the sun ${\lambda _{\max }}T = \text{Constant}$
We have the constant as $\lambda T = \lambda 'T'$ then substitute the given values, we obtain:
$0.5\mu m \times 6000\,K = \lambda ' \times 5692.1\,K \\$
$\Rightarrow \lambda ' = \dfrac{{0.5\mu m \times 6000\,K}}{{5692.1\,K}} \\$
$\Rightarrow \lambda ' = 0.527\mu m \\$
$\therefore \lambda ' \approx 0.53\mu m \\$
Therefore, the maximum wavelength emitted after cooling is approximately $0.53\mu m$.
Additional information: When a body is heated up, its thermal radiation becomes apparent. For shorter wavelengths, the radiation's maximum temperature can be observed. The relationship between the body's temperature and the thermal radiation's wavelength is inverse. The overall emissive power of the body is determined by the area under the curve between its wavelength and temperature.
Note: Before using the Wien's displacement law, it is necessary to convert the wavelength in metres and the temperature in Kelvin from degrees Celsius. For a shorter wavelength of light, the body emits the higher thermal radiation.
Formula used:
The expression of Wien’s displacement law is,
${\lambda _{\max }}T = \text{Constant}$
Here, $\lambda _{\max }$ is the maximum value of the wavelength and $T$ is the temperature.
Complete step by step solution:
In the question the temperature of the sun is $T = 6000\,K$, maximum wavelength of radiation emitted $\lambda = 0.5\mu m$ and the sun cools to a temperature where it emits $81\% $ of present power. Let’s assume the temperature after cooling be $T'$ and the maximum wavelength emitted after cooling be $\lambda '$. As we know the energy emitted per unit time or power emitted by any body $\mu = e\sigma A{T'^4}$.
To find the temperature after cooling, compare the given information with the energy emitted per unit time, then we have:
$\dfrac{{0.81{\mu _1}}}{{{\mu _1}}} = \dfrac{{e\sigma A{{T'}^4}}}{{e\sigma A{{(6000)}^4}}} \\$
$\Rightarrow 0.81 \times {(6000)^4} = {{T'}^4} \\$
$\Rightarrow T' = \sqrt[4]{{1.0497 \times {{10}^{15}}}}K \\$
$\Rightarrow T' = 5692.099 \approx 5692.1\,K \\$
Apply the Wien’s displacement law to calculate the formula for temperature of the sun ${\lambda _{\max }}T = \text{Constant}$
We have the constant as $\lambda T = \lambda 'T'$ then substitute the given values, we obtain:
$0.5\mu m \times 6000\,K = \lambda ' \times 5692.1\,K \\$
$\Rightarrow \lambda ' = \dfrac{{0.5\mu m \times 6000\,K}}{{5692.1\,K}} \\$
$\Rightarrow \lambda ' = 0.527\mu m \\$
$\therefore \lambda ' \approx 0.53\mu m \\$
Therefore, the maximum wavelength emitted after cooling is approximately $0.53\mu m$.
Additional information: When a body is heated up, its thermal radiation becomes apparent. For shorter wavelengths, the radiation's maximum temperature can be observed. The relationship between the body's temperature and the thermal radiation's wavelength is inverse. The overall emissive power of the body is determined by the area under the curve between its wavelength and temperature.
Note: Before using the Wien's displacement law, it is necessary to convert the wavelength in metres and the temperature in Kelvin from degrees Celsius. For a shorter wavelength of light, the body emits the higher thermal radiation.
Recently Updated Pages
Write a composition in approximately 450 500 words class 10 english JEE_Main
Arrange the sentences P Q R between S1 and S5 such class 10 english JEE_Main
Write an article on the need and importance of sports class 10 english JEE_Main
Name the scale on which the destructive energy of an class 11 physics JEE_Main
Choose the exact meaning of the given idiomphrase The class 9 english JEE_Main
Choose the one which best expresses the meaning of class 9 english JEE_Main
Other Pages
The values of kinetic energy K and potential energy class 11 physics JEE_Main
What torque will increase the angular velocity of a class 11 physics JEE_Main
BF3 reacts with NaH at 450 K to form NaF and X When class 11 chemistry JEE_Main
Electric field due to uniformly charged sphere class 12 physics JEE_Main
In the reaction of KMnO4 with H2C204 20 mL of 02 M class 12 chemistry JEE_Main
Dependence of intensity of gravitational field E of class 11 physics JEE_Main