The alcohol that produces turbidity immediately with Lucas reagent at room temperature.
A. \[1 - hydroxy{\text{ }}butane\]
B. \[2 - hydroxy{\text{ }}butane\]
C. \[2 - hydroxy - 2 - methyl{\text{ }}propane\]
D. \[1 - hydroxy - 2 - methyl{\text{ }}propane\]
Answer
Verified
116.4k+ views
Hint: Alcohols react with Lucas reagent \[\left( {ZnC{l_2}/Conc.{\text{ }}HCl} \right)\]in the nucleophilic substitution mechanism.
Different types of alcohol react differently with Lucas reagent.
So, this problem is basically based on the concept of reactivity of different types of alcohols with Lucas reagent.
Complete step by step answer:
As we all know, Lucas reagent is used to differentiate between Primary (\[{1^0}\]) Secondary (\[{{\text{2}}^0}\]) and Tertiary(\[{{\text{3}}^0}\]) alcohols.
Now we will see Lucas reagent reacts differently with different types of alcohols-
\[{1^0}\] Alcohols \[\xrightarrow[{{\text{Conc}}{\text{.}}\;{\text{HCl}}}]{{{\text{ZnC}}{{\text{l}}_{\text{2}}}}}\]Precipitate forms after \[10{\text{ }}minutes\]
\[{{\text{2}}^0}\] Alcohols \[\xrightarrow[{{\text{Conc}}{\text{.}}\;{\text{HCl}}}]{{{\text{ZnC}}{{\text{l}}_{\text{2}}}}}\] Precipitate forms within \[5 - 10{\text{ }}minutes\]
\[{{\text{3}}^0}\] Alcohols \[\xrightarrow[{{\text{Conc}}{\text{.}}\;{\text{HCl}}}]{{{\text{ZnC}}{{\text{l}}_{\text{2}}}}}\] Precipitate forms immediately
Now we will see the mechanism of the reaction-
If the nucleophilic substitution gets completed in two steps, \[i.e.\]\[S_N^{{\text{ 1}}}\] mechanism-
\[{\text{R - OH }}\xrightarrow{{}}{\text{ }}{{\text{R}}^ + }{\text{ }}\xrightarrow{{{X^ - }}}\;{\text{R - X (Racemic mixture)}}\]
If the nucleophilic substitution gets completed in one step, i.e. \[S_N^{{\text{ 2}}}\] mechanism-
\[{{\text{X}}^ - }{\text{ + R - OH }}\xrightarrow[{}]{{}}{\text{ [X - - - R - - - OH] }}\xrightarrow[{}]{{}}\,{\text{X - R}}\]
Schematic representation of \[S_N^{{\text{ 1}}}\] mechanism-
Schematic representation of \[S_N^{{\text{ 2}}}\] mechanism-
So, the\[S_N^{{\text{ 1}}}\] mechanism gives a carbocation during the course of reaction but the \[S_N^{{\text{ 2}}}\] mechanism gets completed in one step so it does not give any such carbocation during the course of reaction.
The reactivity of alcohols in the \[S_N^{{\text{ 1}}}\] mechanism -\[{{\text{3}}^0}\]- alcohol >\[{\text{ }}{{\text{2}}^0}\]- alcohol >\[{1^0}\]- alcohol
The reactivity of alcohols in the \[S_N^{{\text{ 2}}}\] mechanism - \[{1^0}\]- alcohol>\[{\text{ }}{{\text{2}}^0}\]- alcohol>\[{{\text{3}}^0}\]- alcohol
So, Lucas reagent reacts with alcohols in \[S_N^{{\text{ 1}}}\] mechanism, where the \[{{\text{3}}^0}\]-alcohol reacts immediately.
Now, the structures of the given options-
From the above structures, it is clear that Option-\[C\] \[i.e.2 - hydroxy - 2 - methyl\]propane is a tertiary alcohol.
So option-C is the correct answer.
Note: Remember, \[S_N^{{\text{ 1}}}\] mechanism gives a carbocation in the\[{1^{st}}step\], which subsequently reacts with the nucleophile resulting the racemic mixture. Because a carbocation has one vacant p-orbital which can accept the nucleophile using both the lobes of the p-orbital. So, the rate of reaction depends on the stability of the carbocation.
On the other hand, in \[S_N^{{\text{ 2}}}\]mechanism, no such carbocation forms. So, the rate of reaction depends on the availability of the Carbon atom of the substrate molecule.
Different types of alcohol react differently with Lucas reagent.
So, this problem is basically based on the concept of reactivity of different types of alcohols with Lucas reagent.
Complete step by step answer:
As we all know, Lucas reagent is used to differentiate between Primary (\[{1^0}\]) Secondary (\[{{\text{2}}^0}\]) and Tertiary(\[{{\text{3}}^0}\]) alcohols.
Now we will see Lucas reagent reacts differently with different types of alcohols-
\[{1^0}\] Alcohols \[\xrightarrow[{{\text{Conc}}{\text{.}}\;{\text{HCl}}}]{{{\text{ZnC}}{{\text{l}}_{\text{2}}}}}\]Precipitate forms after \[10{\text{ }}minutes\]
\[{{\text{2}}^0}\] Alcohols \[\xrightarrow[{{\text{Conc}}{\text{.}}\;{\text{HCl}}}]{{{\text{ZnC}}{{\text{l}}_{\text{2}}}}}\] Precipitate forms within \[5 - 10{\text{ }}minutes\]
\[{{\text{3}}^0}\] Alcohols \[\xrightarrow[{{\text{Conc}}{\text{.}}\;{\text{HCl}}}]{{{\text{ZnC}}{{\text{l}}_{\text{2}}}}}\] Precipitate forms immediately
Now we will see the mechanism of the reaction-
If the nucleophilic substitution gets completed in two steps, \[i.e.\]\[S_N^{{\text{ 1}}}\] mechanism-
\[{\text{R - OH }}\xrightarrow{{}}{\text{ }}{{\text{R}}^ + }{\text{ }}\xrightarrow{{{X^ - }}}\;{\text{R - X (Racemic mixture)}}\]
If the nucleophilic substitution gets completed in one step, i.e. \[S_N^{{\text{ 2}}}\] mechanism-
\[{{\text{X}}^ - }{\text{ + R - OH }}\xrightarrow[{}]{{}}{\text{ [X - - - R - - - OH] }}\xrightarrow[{}]{{}}\,{\text{X - R}}\]
Schematic representation of \[S_N^{{\text{ 1}}}\] mechanism-
Schematic representation of \[S_N^{{\text{ 2}}}\] mechanism-
So, the\[S_N^{{\text{ 1}}}\] mechanism gives a carbocation during the course of reaction but the \[S_N^{{\text{ 2}}}\] mechanism gets completed in one step so it does not give any such carbocation during the course of reaction.
The reactivity of alcohols in the \[S_N^{{\text{ 1}}}\] mechanism -\[{{\text{3}}^0}\]- alcohol >\[{\text{ }}{{\text{2}}^0}\]- alcohol >\[{1^0}\]- alcohol
The reactivity of alcohols in the \[S_N^{{\text{ 2}}}\] mechanism - \[{1^0}\]- alcohol>\[{\text{ }}{{\text{2}}^0}\]- alcohol>\[{{\text{3}}^0}\]- alcohol
So, Lucas reagent reacts with alcohols in \[S_N^{{\text{ 1}}}\] mechanism, where the \[{{\text{3}}^0}\]-alcohol reacts immediately.
Now, the structures of the given options-
From the above structures, it is clear that Option-\[C\] \[i.e.2 - hydroxy - 2 - methyl\]propane is a tertiary alcohol.
So option-C is the correct answer.
Note: Remember, \[S_N^{{\text{ 1}}}\] mechanism gives a carbocation in the\[{1^{st}}step\], which subsequently reacts with the nucleophile resulting the racemic mixture. Because a carbocation has one vacant p-orbital which can accept the nucleophile using both the lobes of the p-orbital. So, the rate of reaction depends on the stability of the carbocation.
On the other hand, in \[S_N^{{\text{ 2}}}\]mechanism, no such carbocation forms. So, the rate of reaction depends on the availability of the Carbon atom of the substrate molecule.
Recently Updated Pages
How to find Oxidation Number - Important Concepts for JEE
How Electromagnetic Waves are Formed - Important Concepts for JEE
Electrical Resistance - Important Concepts and Tips for JEE
Average Atomic Mass - Important Concepts and Tips for JEE
Chemical Equation - Important Concepts and Tips for JEE
Concept of CP and CV of Gas - Important Concepts and Tips for JEE
Trending doubts
JEE Main 2025: Application Form (Out), Exam Dates (Released), Eligibility & More
JEE Main Chemistry Question Paper with Answer Keys and Solutions
Learn About Angle Of Deviation In Prism: JEE Main Physics 2025
JEE Main Login 2045: Step-by-Step Instructions and Details
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
Physics Average Value and RMS Value JEE Main 2025
Other Pages
NCERT Solutions for Class 11 Chemistry Chapter 7 Redox Reaction
NCERT Solutions for Class 11 Chemistry Chapter 5 Thermodynamics
NCERT Solutions for Class 11 Chemistry Chapter 8 Organic Chemistry
NCERT Solutions for Class 11 Chemistry Chapter 6 Equilibrium
NCERT Solutions for Class 11 Chemistry Chapter 9 Hydrocarbons
Equilibrium Class 11 Notes: CBSE Chemistry Chapter 6