The angular magnification of an astronomical telescope of a distant object is \[5\]. If the distance between the objective and eyepiece is $36cm$ and the final image is formed at infinity, the focal length of its objective and eyepiece will be:
(A) ${f_o} = 30cm$ and ${f_e} = 6cm$
(B) ${f_o} = 0.72$ and ${f_e} = 3cm$
(C) ${f_o} = 30cm$ and ${f_e} = 10cm$
(D) ${f_0} = 50cm$ and ${f_e} = 10cm$
Answer
Verified
124.2k+ views
Hint: Use the angular magnification equation which will be in terms of objective focal length and eyepiece focal length. This will give a direct relation between the focal length of the eyepiece and the focal length of the objective of the telescope. The distance between the lens is equal to the focal lengths of the objective and the eyepiece. Using these relations to arrive at the answer.
Complete step by step solution:
Let the distance between the objective lens and the eyepiece be $L$ . Let the focal length of the objective and the eyepiece be ${f_o}$ and ${f_e}$ respectively. Let the angular magnification be represented as $M$ .
Angular magnification of an astronomical telescope is given by
$M = \dfrac{{{f_o}}}{{{f_e}}}$
Substituting the given values of ${f_o}$ and ${f_e}$ in $M$ , we get
$5 = \dfrac{{{f_o}}}{{{f_e}}}$
$ \Rightarrow 5{f_e} = {f_o}$
Also, $L = {f_o} + {f_e}$
By substituting the given value of $L$ , we get
$36 = {f_o} + {f_e}$
By substituting the already derived relation for ${f_o}$ in the above equation, we get
$36 = 5{f_e} + {f_e}$
$\therefore {f_e} = \dfrac{{36}}{6}$
From the above equation, we get ${f_e} = 6cm$ .
$\therefore {f_o} = 5{f_e}$
By substituting the calculated value for ${f_e}$ ,
${f_o} = 5 \times 6 = 30cm$
So, the calculated values are: ${f_o} = 30cm$ and the calculated value for ${f_e} = 6cm$.
$\therefore $ option (A) is the correct option.
Note:
In an astronomical telescope, the diminished image of the objective is made to fall on the focus of the eyepiece. That is why the distance between the lenses is equal to the focal lengths of the lenses. The eyepiece gives an enlarged, magnified image of this virtual object( image of an objective).
Complete step by step solution:
Let the distance between the objective lens and the eyepiece be $L$ . Let the focal length of the objective and the eyepiece be ${f_o}$ and ${f_e}$ respectively. Let the angular magnification be represented as $M$ .
Angular magnification of an astronomical telescope is given by
$M = \dfrac{{{f_o}}}{{{f_e}}}$
Substituting the given values of ${f_o}$ and ${f_e}$ in $M$ , we get
$5 = \dfrac{{{f_o}}}{{{f_e}}}$
$ \Rightarrow 5{f_e} = {f_o}$
Also, $L = {f_o} + {f_e}$
By substituting the given value of $L$ , we get
$36 = {f_o} + {f_e}$
By substituting the already derived relation for ${f_o}$ in the above equation, we get
$36 = 5{f_e} + {f_e}$
$\therefore {f_e} = \dfrac{{36}}{6}$
From the above equation, we get ${f_e} = 6cm$ .
$\therefore {f_o} = 5{f_e}$
By substituting the calculated value for ${f_e}$ ,
${f_o} = 5 \times 6 = 30cm$
So, the calculated values are: ${f_o} = 30cm$ and the calculated value for ${f_e} = 6cm$.
$\therefore $ option (A) is the correct option.
Note:
In an astronomical telescope, the diminished image of the objective is made to fall on the focus of the eyepiece. That is why the distance between the lenses is equal to the focal lengths of the lenses. The eyepiece gives an enlarged, magnified image of this virtual object( image of an objective).
Recently Updated Pages
Young's Double Slit Experiment Step by Step Derivation
Difference Between Circuit Switching and Packet Switching
Difference Between Mass and Weight
JEE Main Participating Colleges 2024 - A Complete List of Top Colleges
JEE Main Maths Paper Pattern 2025 – Marking, Sections & Tips
Sign up for JEE Main 2025 Live Classes - Vedantu
Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility & More
JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking
The formula of the kinetic mass of a photon is Where class 12 physics JEE_Main
JEE Main 2023 January 24 Shift 2 Question Paper with Answer Keys & Solutions
Learn About Angle Of Deviation In Prism: JEE Main Physics 2025
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs
JEE Main Login 2045: Step-by-Step Instructions and Details
Dual Nature of Radiation and Matter Class 12 Notes: CBSE Physics Chapter 11
Electric field due to uniformly charged sphere class 12 physics JEE_Main
Ideal and Non-Ideal Solutions Raoult's Law - JEE
JEE Mains 2025 Correction Window Date (Out) – Check Procedure and Fees Here!