Answer
Verified
108.9k+ views
Hint As we know the volume of the sphere. $V = \dfrac{4}{3}\pi {r^3}$. We will differentiate both sides with respect to $r$ and after dividing the equation by $V$, we will get the new equation, and then by using the bulk modulus we would be able to get the fractional decrease in the radius.
Formula used:
The volume of the sphere will be given by,
$V = \dfrac{4}{3}\pi {r^3}$
Here,
$V$, will be the volume
$r$ , will be the radius
Bulk modulus,
$B = \dfrac{{ - P}}{{\dfrac{{\vartriangle V}}{V}}}$
Here,
$B$, will be the bulk modulus
$P$, will be the pressure
$\vartriangle V$, change in the volume
Complete Step By Step Solution
As we already know,
The volume of the sphere is given by
$V = \dfrac{4}{3}\pi {r^3}$
So we will now differentiate the above equation both sides with respect to $r$
We get,
$ \Rightarrow \dfrac{{dV}}{{dr}} = 3\left( {\dfrac{4}{3}\pi {r^2}} \right)$
So on simplifying we get,
$ \Rightarrow \dfrac{{dV}}{{dr}} = 4\pi {r^2}$
Here the term $dV$can be written as $\vartriangle V$and similarly $dr$as$\vartriangle r$.
Therefore,
$ \Rightarrow \vartriangle V = 4\pi {r^2}\vartriangle r$
Now dividing the above equation by$V$, and also putting the value of $V$on the RHS side, we get
$ \Rightarrow \dfrac{{\vartriangle v}}{v} = \dfrac{{4\pi {r^2}\vartriangle r}}{{\dfrac{4}{3}\pi {r^3}}}$
So on solving the above equation, we get
$ \Rightarrow \dfrac{{\vartriangle v}}{v} = 3\dfrac{{\vartriangle r}}{r}$
Now by using the bulk modulus, we get
$B = \dfrac{{ - P}}{{\dfrac{{\vartriangle V}}{V}}}$
Substituting the values, we get
$ \Rightarrow B = \dfrac{{ - P}}{{\dfrac{{3\vartriangle r}}{r}}}$
And it can be written as,
$ \Rightarrow \dfrac{{\vartriangle r}}{r} = \dfrac{P}{{3B}}$
Therefore, the option $A$ will be the correct one.
Note Bulk modulus, mathematical consistency that portrays the versatile properties of a strong or liquid when it is feeling the squeeze on all surfaces. The applied weight lessens the volume of a material, which re-visitations of its unique volume when the weight is taken out. At times alluded to as the inconceivability, the mass modulus is a proportion of the capacity of a substance to withstand changes in volume when under pressure on all sides. It is equivalent to the remainder of the applied weight isolated by the relative distortion.
Formula used:
The volume of the sphere will be given by,
$V = \dfrac{4}{3}\pi {r^3}$
Here,
$V$, will be the volume
$r$ , will be the radius
Bulk modulus,
$B = \dfrac{{ - P}}{{\dfrac{{\vartriangle V}}{V}}}$
Here,
$B$, will be the bulk modulus
$P$, will be the pressure
$\vartriangle V$, change in the volume
Complete Step By Step Solution
As we already know,
The volume of the sphere is given by
$V = \dfrac{4}{3}\pi {r^3}$
So we will now differentiate the above equation both sides with respect to $r$
We get,
$ \Rightarrow \dfrac{{dV}}{{dr}} = 3\left( {\dfrac{4}{3}\pi {r^2}} \right)$
So on simplifying we get,
$ \Rightarrow \dfrac{{dV}}{{dr}} = 4\pi {r^2}$
Here the term $dV$can be written as $\vartriangle V$and similarly $dr$as$\vartriangle r$.
Therefore,
$ \Rightarrow \vartriangle V = 4\pi {r^2}\vartriangle r$
Now dividing the above equation by$V$, and also putting the value of $V$on the RHS side, we get
$ \Rightarrow \dfrac{{\vartriangle v}}{v} = \dfrac{{4\pi {r^2}\vartriangle r}}{{\dfrac{4}{3}\pi {r^3}}}$
So on solving the above equation, we get
$ \Rightarrow \dfrac{{\vartriangle v}}{v} = 3\dfrac{{\vartriangle r}}{r}$
Now by using the bulk modulus, we get
$B = \dfrac{{ - P}}{{\dfrac{{\vartriangle V}}{V}}}$
Substituting the values, we get
$ \Rightarrow B = \dfrac{{ - P}}{{\dfrac{{3\vartriangle r}}{r}}}$
And it can be written as,
$ \Rightarrow \dfrac{{\vartriangle r}}{r} = \dfrac{P}{{3B}}$
Therefore, the option $A$ will be the correct one.
Note Bulk modulus, mathematical consistency that portrays the versatile properties of a strong or liquid when it is feeling the squeeze on all surfaces. The applied weight lessens the volume of a material, which re-visitations of its unique volume when the weight is taken out. At times alluded to as the inconceivability, the mass modulus is a proportion of the capacity of a substance to withstand changes in volume when under pressure on all sides. It is equivalent to the remainder of the applied weight isolated by the relative distortion.
Recently Updated Pages
If x2 hx 21 0x2 3hx + 35 0h 0 has a common root then class 10 maths JEE_Main
The radius of a sector is 12 cm and the angle is 120circ class 10 maths JEE_Main
For what value of x function fleft x right x4 4x3 + class 10 maths JEE_Main
What is the area under the curve yx+x1 betweenx0 and class 10 maths JEE_Main
The volume of a sphere is dfrac43pi r3 cubic units class 10 maths JEE_Main
Which of the following is a good conductor of electricity class 10 chemistry JEE_Main