
The ceiling of a long hall is 25 m high. What is the maximum horizontal distance that a ball thrown with a speed of 40 m/s can go without hitting the ceiling of the hall?
Answer
232.5k+ views
Hint:- Proceed the solution of this question, with clear understanding of what is given in question, as maximum height and initial velocity is given so we can use the formula of maximum height of projectile motion from there we can get the value of $\sin \theta {\text{ & cos}}\theta $ which is required in the formula of horizontal range.
Complete step-by-step solution -
In the question it is given that,
Initial velocity u= 40 m/s
Maximum height H =25 m
Consider $g = 10{\text{ }}\dfrac{{\text{m}}}{{{{\sec }^2}}}$
we know that he maximum height in projectile motion equal to $\dfrac{{{{\text{u}}^2}{\text{si}}{{\text{n}}^2}\theta }}{{2g}}$
so equalising it with given maximum height in question i.e. 25 m
$ \Rightarrow \dfrac{{{{\text{u}}^2}{\text{si}}{{\text{n}}^2}\theta }}{{2g}} = 25$
Hence find the value of ${\text{sin}}\theta $ from here
$ \Rightarrow {\text{si}}{{\text{n}}^2}\theta = \dfrac{{25 \times 2g}}{{{{\text{u}}^2}}}$
$ \Rightarrow {\text{si}}{{\text{n}}^2}\theta = \dfrac{{25 \times 20}}{{1600}} = \dfrac{{500}}{{1600}} = \dfrac{5}{{16}}$
$ \Rightarrow {\text{sin}}\theta = \sqrt {\dfrac{5}{{16}}} $ ………….(1)
$ \Rightarrow \cos \theta = \sqrt {1 - {{\sin }^2}\theta } = \sqrt {1 - \dfrac{5}{{16}}} = \sqrt {\dfrac{{11}}{{16}}} $ …………(2)
We know that the maximum horizontal distance will be equal to the horizontal range in projectile motion.
$ \Rightarrow {\text{Range (R) = }}\dfrac{{{{\text{u}}^2}\sin 2\theta }}{g}$
Using $\sin 2\theta = {\text{ }}2\sin \theta \cos \theta $
$ \Rightarrow {\text{R = }}\dfrac{{{{\text{u}}^2}\left( {2\sin \theta \cos \theta } \right)}}{g}$
Hence on putting the values of $\sin \theta {\text{& cos}}\theta $ from expression (1) and (2)
$ \Rightarrow {\text{R = }}\dfrac{{1600\left( {2\sqrt {\dfrac{5}{{16}}} \times \sqrt {\dfrac{{11}}{{16}}} } \right)}}{{10}} = 160 \times 2\dfrac{{\sqrt {55} }}{{16}} = 20 \times \sqrt {55} = 148.32$
Therefore, Range (R) = 148.32 m
Note- In the question of projectile motion, it is advisable to remember some general formulas of projectile motion as formula of maximum height, Range and Time of flight, then this way we can save our time otherwise it will be lengthier to derive every time and chances of mistakes also increases.
Complete step-by-step solution -
In the question it is given that,
Initial velocity u= 40 m/s
Maximum height H =25 m
Consider $g = 10{\text{ }}\dfrac{{\text{m}}}{{{{\sec }^2}}}$
we know that he maximum height in projectile motion equal to $\dfrac{{{{\text{u}}^2}{\text{si}}{{\text{n}}^2}\theta }}{{2g}}$
so equalising it with given maximum height in question i.e. 25 m
$ \Rightarrow \dfrac{{{{\text{u}}^2}{\text{si}}{{\text{n}}^2}\theta }}{{2g}} = 25$
Hence find the value of ${\text{sin}}\theta $ from here
$ \Rightarrow {\text{si}}{{\text{n}}^2}\theta = \dfrac{{25 \times 2g}}{{{{\text{u}}^2}}}$
$ \Rightarrow {\text{si}}{{\text{n}}^2}\theta = \dfrac{{25 \times 20}}{{1600}} = \dfrac{{500}}{{1600}} = \dfrac{5}{{16}}$
$ \Rightarrow {\text{sin}}\theta = \sqrt {\dfrac{5}{{16}}} $ ………….(1)
$ \Rightarrow \cos \theta = \sqrt {1 - {{\sin }^2}\theta } = \sqrt {1 - \dfrac{5}{{16}}} = \sqrt {\dfrac{{11}}{{16}}} $ …………(2)
We know that the maximum horizontal distance will be equal to the horizontal range in projectile motion.
$ \Rightarrow {\text{Range (R) = }}\dfrac{{{{\text{u}}^2}\sin 2\theta }}{g}$
Using $\sin 2\theta = {\text{ }}2\sin \theta \cos \theta $
$ \Rightarrow {\text{R = }}\dfrac{{{{\text{u}}^2}\left( {2\sin \theta \cos \theta } \right)}}{g}$
Hence on putting the values of $\sin \theta {\text{& cos}}\theta $ from expression (1) and (2)
$ \Rightarrow {\text{R = }}\dfrac{{1600\left( {2\sqrt {\dfrac{5}{{16}}} \times \sqrt {\dfrac{{11}}{{16}}} } \right)}}{{10}} = 160 \times 2\dfrac{{\sqrt {55} }}{{16}} = 20 \times \sqrt {55} = 148.32$
Therefore, Range (R) = 148.32 m
Note- In the question of projectile motion, it is advisable to remember some general formulas of projectile motion as formula of maximum height, Range and Time of flight, then this way we can save our time otherwise it will be lengthier to derive every time and chances of mistakes also increases.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Laws of Motion Class 11 Physics Chapter 4 CBSE Notes - 2025-26

Waves Class 11 Physics Chapter 14 CBSE Notes - 2025-26

Mechanical Properties of Fluids Class 11 Physics Chapter 9 CBSE Notes - 2025-26

Thermodynamics Class 11 Physics Chapter 11 CBSE Notes - 2025-26

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

