
The dimensions of electromotive force in terms of current $A$ are:
A) $\left[ {M{L^{ - 2}}{A^{ - 2}}} \right]$
B) $\left[ {M{L^2}{T^{ - 2}}{A^2}} \right]$
C) $\left[ {M{L^2}{T^{ - 2}}{A^{ - 2}}} \right]$
D) $\left[ {M{L^2}{T^{ - 3}}{A^{ - 1}}} \right]$
Answer
135k+ views
Hint: To solve this question we should know about the base quantities which are used to form the dimensional formulae of any quantity. Also we should know how electromotive force is calculated i.e., the quantities involved in its calculation and their dimensional formulae.
Formulae used:
$V = \dfrac{W}{q}$
Here $V$ is the potential difference across the cell or the electromotive force of the cell, $W$ is the work done by the charge and $q$ is the charge.
Complete answer:
To solve this question we should know what electromotive force is. Electromotive force or the EMF, for short, of a cell is defined as the electric potential produced either by an electrochemical cell or by changing the magnetic field.
We know that,
$V = \dfrac{W}{q}$
Here $V$ is the potential difference across the cell or the electromotive force of the cell, $W$ is the work done by the charge and $q$ is the charge.
Let this be equation 1.
The potential difference gives us the value of the electromotive force or EMF of a cell. So,
$ \Rightarrow V = \dfrac{W}{q}$
Let this be equation 1.
This will give the value of electromotive force or EMF of a cell.
We know that the dimensional formulae of
$\left[ q \right] = \left[ {AT} \right]$
$\left[ W \right] = \left[ {M{L^2}{T^{ - 2}}} \right]$
Substituting the values of the above quantities in the equation 1 we get,
$ \Rightarrow \left[ V \right] = \dfrac{{\left[ {M{L^2}{T^{ - 2}}} \right]}}{{\left[ {AT} \right]}}$
$ \Rightarrow \left[ V \right] = \left[ {M{L^2}{T^{ - 3}}{A^{ - 1}}} \right]$
So the answer will be option (D).
Note: To solve questions related to dimensional analysis of any quantity, break the quantity into its smaller known units. Use the dimensional formulae of the smaller known units to find the dimensional formulae of the given quantity. Electromotive force is the energy per unit electric charge. It is the force driving all electrons. Flow of electrons is due to this force.
Formulae used:
$V = \dfrac{W}{q}$
Here $V$ is the potential difference across the cell or the electromotive force of the cell, $W$ is the work done by the charge and $q$ is the charge.
Complete answer:
To solve this question we should know what electromotive force is. Electromotive force or the EMF, for short, of a cell is defined as the electric potential produced either by an electrochemical cell or by changing the magnetic field.
We know that,
$V = \dfrac{W}{q}$
Here $V$ is the potential difference across the cell or the electromotive force of the cell, $W$ is the work done by the charge and $q$ is the charge.
Let this be equation 1.
The potential difference gives us the value of the electromotive force or EMF of a cell. So,
$ \Rightarrow V = \dfrac{W}{q}$
Let this be equation 1.
This will give the value of electromotive force or EMF of a cell.
We know that the dimensional formulae of
$\left[ q \right] = \left[ {AT} \right]$
$\left[ W \right] = \left[ {M{L^2}{T^{ - 2}}} \right]$
Substituting the values of the above quantities in the equation 1 we get,
$ \Rightarrow \left[ V \right] = \dfrac{{\left[ {M{L^2}{T^{ - 2}}} \right]}}{{\left[ {AT} \right]}}$
$ \Rightarrow \left[ V \right] = \left[ {M{L^2}{T^{ - 3}}{A^{ - 1}}} \right]$
So the answer will be option (D).
Note: To solve questions related to dimensional analysis of any quantity, break the quantity into its smaller known units. Use the dimensional formulae of the smaller known units to find the dimensional formulae of the given quantity. Electromotive force is the energy per unit electric charge. It is the force driving all electrons. Flow of electrons is due to this force.
Recently Updated Pages
JEE Main 2021 July 25 Shift 2 Question Paper with Answer Key

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 20 Shift 2 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

How to find Oxidation Number - Important Concepts for JEE

Half-Life of Order Reactions - Important Concepts and Tips for JEE

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Degree of Dissociation and Its Formula With Solved Example for JEE

Electric field due to uniformly charged sphere class 12 physics JEE_Main

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Elastic Collisions in One Dimension - JEE Important Topic

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Dual Nature of Radiation and Matter Class 12 Notes: CBSE Physics Chapter 11

Displacement-Time Graph and Velocity-Time Graph for JEE

Formula for number of images formed by two plane mirrors class 12 physics JEE_Main

JEE Advanced 2024 Syllabus Weightage

JEE Main Chemistry Question Paper with Answer Keys and Solutions
