![SearchIcon](https://vmkt.vedantu.com/vmkt/PROD/png/bdcdbbd8-08a7-4688-98e6-4aa54e5e0800-1733305962725-4102606384256179.png)
The dimensions of electromotive force in terms of current $A$ are:
A) $\left[ {M{L^{ - 2}}{A^{ - 2}}} \right]$
B) $\left[ {M{L^2}{T^{ - 2}}{A^2}} \right]$
C) $\left[ {M{L^2}{T^{ - 2}}{A^{ - 2}}} \right]$
D) $\left[ {M{L^2}{T^{ - 3}}{A^{ - 1}}} \right]$
Answer
124.8k+ views
Hint: To solve this question we should know about the base quantities which are used to form the dimensional formulae of any quantity. Also we should know how electromotive force is calculated i.e., the quantities involved in its calculation and their dimensional formulae.
Formulae used:
$V = \dfrac{W}{q}$
Here $V$ is the potential difference across the cell or the electromotive force of the cell, $W$ is the work done by the charge and $q$ is the charge.
Complete answer:
To solve this question we should know what electromotive force is. Electromotive force or the EMF, for short, of a cell is defined as the electric potential produced either by an electrochemical cell or by changing the magnetic field.
We know that,
$V = \dfrac{W}{q}$
Here $V$ is the potential difference across the cell or the electromotive force of the cell, $W$ is the work done by the charge and $q$ is the charge.
Let this be equation 1.
The potential difference gives us the value of the electromotive force or EMF of a cell. So,
$ \Rightarrow V = \dfrac{W}{q}$
Let this be equation 1.
This will give the value of electromotive force or EMF of a cell.
We know that the dimensional formulae of
$\left[ q \right] = \left[ {AT} \right]$
$\left[ W \right] = \left[ {M{L^2}{T^{ - 2}}} \right]$
Substituting the values of the above quantities in the equation 1 we get,
$ \Rightarrow \left[ V \right] = \dfrac{{\left[ {M{L^2}{T^{ - 2}}} \right]}}{{\left[ {AT} \right]}}$
$ \Rightarrow \left[ V \right] = \left[ {M{L^2}{T^{ - 3}}{A^{ - 1}}} \right]$
So the answer will be option (D).
Note: To solve questions related to dimensional analysis of any quantity, break the quantity into its smaller known units. Use the dimensional formulae of the smaller known units to find the dimensional formulae of the given quantity. Electromotive force is the energy per unit electric charge. It is the force driving all electrons. Flow of electrons is due to this force.
Formulae used:
$V = \dfrac{W}{q}$
Here $V$ is the potential difference across the cell or the electromotive force of the cell, $W$ is the work done by the charge and $q$ is the charge.
Complete answer:
To solve this question we should know what electromotive force is. Electromotive force or the EMF, for short, of a cell is defined as the electric potential produced either by an electrochemical cell or by changing the magnetic field.
We know that,
$V = \dfrac{W}{q}$
Here $V$ is the potential difference across the cell or the electromotive force of the cell, $W$ is the work done by the charge and $q$ is the charge.
Let this be equation 1.
The potential difference gives us the value of the electromotive force or EMF of a cell. So,
$ \Rightarrow V = \dfrac{W}{q}$
Let this be equation 1.
This will give the value of electromotive force or EMF of a cell.
We know that the dimensional formulae of
$\left[ q \right] = \left[ {AT} \right]$
$\left[ W \right] = \left[ {M{L^2}{T^{ - 2}}} \right]$
Substituting the values of the above quantities in the equation 1 we get,
$ \Rightarrow \left[ V \right] = \dfrac{{\left[ {M{L^2}{T^{ - 2}}} \right]}}{{\left[ {AT} \right]}}$
$ \Rightarrow \left[ V \right] = \left[ {M{L^2}{T^{ - 3}}{A^{ - 1}}} \right]$
So the answer will be option (D).
Note: To solve questions related to dimensional analysis of any quantity, break the quantity into its smaller known units. Use the dimensional formulae of the smaller known units to find the dimensional formulae of the given quantity. Electromotive force is the energy per unit electric charge. It is the force driving all electrons. Flow of electrons is due to this force.
Recently Updated Pages
Young's Double Slit Experiment Step by Step Derivation
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Difference Between Circuit Switching and Packet Switching
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Difference Between Mass and Weight
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Main Participating Colleges 2024 - A Complete List of Top Colleges
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Main Maths Paper Pattern 2025 – Marking, Sections & Tips
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Sign up for JEE Main 2025 Live Classes - Vedantu
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility & More
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
The formula of the kinetic mass of a photon is Where class 12 physics JEE_Main
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Main 2023 January 24 Shift 2 Question Paper with Answer Keys & Solutions
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Learn About Angle Of Deviation In Prism: JEE Main Physics 2025
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Main Login 2045: Step-by-Step Instructions and Details
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Dual Nature of Radiation and Matter Class 12 Notes: CBSE Physics Chapter 11
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Electric field due to uniformly charged sphere class 12 physics JEE_Main
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Ideal and Non-Ideal Solutions Raoult's Law - JEE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Mains 2025 Correction Window Date (Out) – Check Procedure and Fees Here!
![arrow-right](/cdn/images/seo-templates/arrow-right.png)