
The displacement y in centimeters is given in terms of time t in second by the equation: \[y = 3\sin (3.14t) + 4\cos (3.14t)\] then the amplitude of SIMPLE HARMONIC MOTION is:
(A) 3cm
(B) 4cm
(C) 5cm
(D) 7cm
Answer
133.2k+ views
Hint: We know that the maximum value of \[a\sin x + b\cos x\] is \[\sqrt {{a^2} + {b^2}} \] . We will implicate the following formulae. The general equation of a Simple Harmonic Wave is in sin so the above will hold true.
Complete step-by-step solution
It is given to us that the equation of the SIMPLE HARMONIC MOTION is
\[y = 3\sin (3.14t) + 4\cos (3.14t)\] .
Here \[a = 3\] and \[b = 4\]
Using \[\sqrt {{a^2} + {b^2}} \]
\[ \Rightarrow Amplitude = \sqrt {{3^2} + {4^2}} = \sqrt {25} = 5\]
The maximum value of the given function is 5 and the maximum displacement in SIMPLE HARMONIC MOTION is the Amplitude of that SIMPLE HARMONIC MOTION.
Therefore, the answer is option C, 5cm.
Note The theta given inside the cos and the sin functions is equal therefore we are able to apply \[\sqrt {{a^2} + {b^2}} \] . If this were not the case then convert sin function to cos function or vice-versa and then add the corresponding functions to obtain the required value of amplitude.
Additional Information Simple Harmonic Motions is a type of periodic motion in which the acceleration of the body is directly proportional to its displacement from the mean position.
With the frequency of oscillations being the constant.
\[a = {\omega ^2}x\]
And its general equation is given by \[x = A\sin (\omega t + \phi )\]
Complete step-by-step solution
It is given to us that the equation of the SIMPLE HARMONIC MOTION is
\[y = 3\sin (3.14t) + 4\cos (3.14t)\] .
Here \[a = 3\] and \[b = 4\]
Using \[\sqrt {{a^2} + {b^2}} \]
\[ \Rightarrow Amplitude = \sqrt {{3^2} + {4^2}} = \sqrt {25} = 5\]
The maximum value of the given function is 5 and the maximum displacement in SIMPLE HARMONIC MOTION is the Amplitude of that SIMPLE HARMONIC MOTION.
Therefore, the answer is option C, 5cm.
Note The theta given inside the cos and the sin functions is equal therefore we are able to apply \[\sqrt {{a^2} + {b^2}} \] . If this were not the case then convert sin function to cos function or vice-versa and then add the corresponding functions to obtain the required value of amplitude.
Additional Information Simple Harmonic Motions is a type of periodic motion in which the acceleration of the body is directly proportional to its displacement from the mean position.
With the frequency of oscillations being the constant.
\[a = {\omega ^2}x\]
And its general equation is given by \[x = A\sin (\omega t + \phi )\]
Recently Updated Pages
Sign up for JEE Main 2025 Live Classes - Vedantu

JEE Main Books 2023-24: Best JEE Main Books for Physics, Chemistry and Maths

JEE Main 2023 April 13 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 11 Shift 2 Question Paper with Answer Key

JEE Main 2023 April 10 Shift 2 Question Paper with Answer Key

JEE Main 2023 (April 11th Shift 2) Physics Question Paper with Answer Key

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility & More

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Class 11 JEE Main Physics Mock Test 2025

Current Loop as Magnetic Dipole and Its Derivation for JEE

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Units and Measurements Class 11 Notes: CBSE Physics Chapter 1

Important Questions for CBSE Class 11 Physics Chapter 1 - Units and Measurement

NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line

Motion In A Plane: Line Class 11 Notes: CBSE Physics Chapter 3

Waves Class 11 Notes: CBSE Physics Chapter 14
