
The eccentricity of an ellipse \[9{x^2} + 16{y^2} = 144\] is
(a) \[\dfrac{{\sqrt 3 }}{5}\]
(b) \[\dfrac{{\sqrt 5 }}{3}\]
(c) \[\dfrac{{\sqrt 7 }}{4}\]
(d) \[\dfrac{2}{5}\]
Answer
232.8k+ views
Hint: Here the eccentricity of an ellipse is a measure of how nearly circular is the ellipse. Eccentricity is found by the formula eccentricity = c/a where ‘c’ is the distance from the centre to the focus of the ellipse and ‘a’ is the distance from the centre to the vertex for the standard form of the ellipse.
Given ellipse is \[9{x^2} + 16{y^2} = 144\]
Rewriting the ellipse, we get
\[
\dfrac{{9{x^2}}}{{144}} + \dfrac{{16{y^2}}}{{144}} = 1 \\
\\
\dfrac{{{x^2}}}{{16}} + \dfrac{{{y^2}}}{9} = 1 \\
\]
For the ellipse of the form \[\dfrac{{{x^2}}}{{{a^2}}} + \dfrac{{{y^2}}}{{{b^2}}} = 1\] the eccentricity is given by \[e = \dfrac{c}{a}\], where \[c = \sqrt {{a^2} - {b^2}} \].
Comparing both the equations we have \[a = 4,{\text{ }}b = 3{\text{ }}\]
So, \[c = \sqrt {16 - 9} = \sqrt 7 \]
Therefore, \[e = \dfrac{c}{a} = \dfrac{{\sqrt 7 }}{4}\]
Thus, the answer is option (c) \[\dfrac{{\sqrt 7 }}{4}\].
Note: The eccentricity of the ellipse is always greater than zero but less than one i.e. \[0 < e < 1\]. The standard form of the ellipse is \[\dfrac{{{{\left( {x - h} \right)}^2}}}{{{a^2}}} + \dfrac{{{{\left( {y - k} \right)}^2}}}{{{b^2}}} = 1\] with centre \[\left( {h,k} \right)\]. In this problem we have centre \[\left( {0,0} \right)\] so we have used the ellipse form \[\dfrac{{{x^2}}}{{{a^2}}} + \dfrac{{{y^2}}}{{{b^2}}} = 1\].
Given ellipse is \[9{x^2} + 16{y^2} = 144\]
Rewriting the ellipse, we get
\[
\dfrac{{9{x^2}}}{{144}} + \dfrac{{16{y^2}}}{{144}} = 1 \\
\\
\dfrac{{{x^2}}}{{16}} + \dfrac{{{y^2}}}{9} = 1 \\
\]
For the ellipse of the form \[\dfrac{{{x^2}}}{{{a^2}}} + \dfrac{{{y^2}}}{{{b^2}}} = 1\] the eccentricity is given by \[e = \dfrac{c}{a}\], where \[c = \sqrt {{a^2} - {b^2}} \].
Comparing both the equations we have \[a = 4,{\text{ }}b = 3{\text{ }}\]
So, \[c = \sqrt {16 - 9} = \sqrt 7 \]
Therefore, \[e = \dfrac{c}{a} = \dfrac{{\sqrt 7 }}{4}\]
Thus, the answer is option (c) \[\dfrac{{\sqrt 7 }}{4}\].
Note: The eccentricity of the ellipse is always greater than zero but less than one i.e. \[0 < e < 1\]. The standard form of the ellipse is \[\dfrac{{{{\left( {x - h} \right)}^2}}}{{{a^2}}} + \dfrac{{{{\left( {y - k} \right)}^2}}}{{{b^2}}} = 1\] with centre \[\left( {h,k} \right)\]. In this problem we have centre \[\left( {0,0} \right)\] so we have used the ellipse form \[\dfrac{{{x^2}}}{{{a^2}}} + \dfrac{{{y^2}}}{{{b^2}}} = 1\].
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding the Electric Field of a Uniformly Charged Ring

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 11 Maths Chapter 12 Limits and Derivatives (2025-26)

NCERT Solutions For Class 11 Maths Chapter 10 Conic Sections (2025-26)

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

