Answer
Verified
101.1k+ views
Hint: In this question, we have to figure out what the given equation means. For this, we need to simplify the given equation and after simplification, we will check the conditions for circle and straight line and for which this equation is satisfying .
Formula used: We will use the following algebraic formula for solving this example.
\[{\left( {a - b} \right)^2} = {a^2} - 2ab + {b^2}\]
Complete step-by-step answer:
We know that \[{\left( {x - 5} \right)^2} + \left( {x - 5} \right)\left( {y - 6} \right) - 2{\left( {y - 6} \right)^2} = 0\]
Let us simplify the above equation.
Here, we will split the term \[\left( {x - 5} \right)\left( {y - 6} \right)\] as \[2\left( {x - 5} \right)\left( {y - 6} \right) - \left( {x - 5} \right)\left( {y - 6} \right)\]
Thus, we get
\[{\left( {x - 5} \right)^2} + 2\left( {x - 5} \right)\left( {y - 6} \right) - \left( {x - 5} \right)\left( {y - 6} \right) - 2{\left( {y - 6} \right)^2} = 0\]
By taking \[\left( {x - 5} \right)\] common from the first two terms and \[\left( {y - 6} \right)\] from the last two terms, we get
\[
\Rightarrow \left( {x - 5} \right)\left( {\left( {x - 5} \right) + 2\left( {y - 6} \right)} \right) - \left( {y - 6} \right)\left( {\left( {x - 5} \right) + 2\left( {y - 6} \right)} \right) = 0 \\
\Rightarrow \left( {x - 5 - \left( {y - 6} \right)} \right)\left( {\left( {x - 5} \right) + 2\left( {y - 6} \right)} \right) = 0 \\
\Rightarrow \left( {x - 5 - y + 6} \right)\left( {x - 5 + 2y - 12} \right) = 0 \\
\Rightarrow \left( {x - y + 1} \right)\left( {x + 2y - 17} \right) = 0 \\
\]
That means, \[\left( {x - y + 1} \right) = 0\] or \[\left( {x + 2y - 17} \right) = 0\]
These indicate equations of two straight lines as the standard equation of the straight line is \[y = mx + c\] where, \[m\] and \[c\] are constants.
Now, we will choose the correct option from the two remaining options.
Put \[\left( {a,b} \right) \equiv \left( {0,0} \right)\] in the given equation.
So, we get
\[
{\left( {0 - 5} \right)^2} + \left( {0 - 5} \right)\left( {0 - 6} \right) - 2{\left( {0 - 6} \right)^2} = 0 \\
\Rightarrow 25 + 30 - 72 = 0 \\
\Rightarrow - 17 \ne 0 \\
\]
That means it does not satisfy the given equation for the point \[\left( {0,0} \right)\].
Now, we will check for the point \[\left( {a,b} \right) \equiv \left( {5,6} \right)\]
Put \[\left( {a,b} \right) \equiv \left( {5,6} \right)\]in the given equation.
So, we get
\[
{\left( {5 - 5} \right)^2} + \left( {5 - 5} \right)\left( {6 - 6} \right) - 2{\left( {6 - 6} \right)^2} = 0 \\
\Rightarrow 0 = 0 \\
\]
That means the given equation satisfies the point \[\left( {5,6} \right)\].
Hence, the equation \[{\left( {x - 5} \right)^2} + \left( {x - 5} \right)\left( {y - 6} \right) - 2{\left( {y - 6} \right)^2} = 0\] represents two straight lines passing through the point \[\left( {5,6} \right)\]
Therefore, the correct option is (C).
Additional Information: A straight line equation can be expressed in a variety of ways, including point-slope form, slope-intercept form, general form, standard form, and so on. A straight line is a two-dimensional geometric element that goes indefinitely on both ends.
Note:
Many students make mistakes in the simplification part. Specifically in simplifying the given equation which is the multiplication of two brackets. They may confuse with signs so that they will not be able to determine whether the given equation is of the circle or straight lines.
Formula used: We will use the following algebraic formula for solving this example.
\[{\left( {a - b} \right)^2} = {a^2} - 2ab + {b^2}\]
Complete step-by-step answer:
We know that \[{\left( {x - 5} \right)^2} + \left( {x - 5} \right)\left( {y - 6} \right) - 2{\left( {y - 6} \right)^2} = 0\]
Let us simplify the above equation.
Here, we will split the term \[\left( {x - 5} \right)\left( {y - 6} \right)\] as \[2\left( {x - 5} \right)\left( {y - 6} \right) - \left( {x - 5} \right)\left( {y - 6} \right)\]
Thus, we get
\[{\left( {x - 5} \right)^2} + 2\left( {x - 5} \right)\left( {y - 6} \right) - \left( {x - 5} \right)\left( {y - 6} \right) - 2{\left( {y - 6} \right)^2} = 0\]
By taking \[\left( {x - 5} \right)\] common from the first two terms and \[\left( {y - 6} \right)\] from the last two terms, we get
\[
\Rightarrow \left( {x - 5} \right)\left( {\left( {x - 5} \right) + 2\left( {y - 6} \right)} \right) - \left( {y - 6} \right)\left( {\left( {x - 5} \right) + 2\left( {y - 6} \right)} \right) = 0 \\
\Rightarrow \left( {x - 5 - \left( {y - 6} \right)} \right)\left( {\left( {x - 5} \right) + 2\left( {y - 6} \right)} \right) = 0 \\
\Rightarrow \left( {x - 5 - y + 6} \right)\left( {x - 5 + 2y - 12} \right) = 0 \\
\Rightarrow \left( {x - y + 1} \right)\left( {x + 2y - 17} \right) = 0 \\
\]
That means, \[\left( {x - y + 1} \right) = 0\] or \[\left( {x + 2y - 17} \right) = 0\]
These indicate equations of two straight lines as the standard equation of the straight line is \[y = mx + c\] where, \[m\] and \[c\] are constants.
Now, we will choose the correct option from the two remaining options.
Put \[\left( {a,b} \right) \equiv \left( {0,0} \right)\] in the given equation.
So, we get
\[
{\left( {0 - 5} \right)^2} + \left( {0 - 5} \right)\left( {0 - 6} \right) - 2{\left( {0 - 6} \right)^2} = 0 \\
\Rightarrow 25 + 30 - 72 = 0 \\
\Rightarrow - 17 \ne 0 \\
\]
That means it does not satisfy the given equation for the point \[\left( {0,0} \right)\].
Now, we will check for the point \[\left( {a,b} \right) \equiv \left( {5,6} \right)\]
Put \[\left( {a,b} \right) \equiv \left( {5,6} \right)\]in the given equation.
So, we get
\[
{\left( {5 - 5} \right)^2} + \left( {5 - 5} \right)\left( {6 - 6} \right) - 2{\left( {6 - 6} \right)^2} = 0 \\
\Rightarrow 0 = 0 \\
\]
That means the given equation satisfies the point \[\left( {5,6} \right)\].
Hence, the equation \[{\left( {x - 5} \right)^2} + \left( {x - 5} \right)\left( {y - 6} \right) - 2{\left( {y - 6} \right)^2} = 0\] represents two straight lines passing through the point \[\left( {5,6} \right)\]
Therefore, the correct option is (C).
Additional Information: A straight line equation can be expressed in a variety of ways, including point-slope form, slope-intercept form, general form, standard form, and so on. A straight line is a two-dimensional geometric element that goes indefinitely on both ends.
Note:
Many students make mistakes in the simplification part. Specifically in simplifying the given equation which is the multiplication of two brackets. They may confuse with signs so that they will not be able to determine whether the given equation is of the circle or straight lines.
Recently Updated Pages
Write a composition in approximately 450 500 words class 10 english JEE_Main
Arrange the sentences P Q R between S1 and S5 such class 10 english JEE_Main
Write an article on the need and importance of sports class 10 english JEE_Main
Name the scale on which the destructive energy of an class 11 physics JEE_Main
Choose the exact meaning of the given idiomphrase The class 9 english JEE_Main
Choose the one which best expresses the meaning of class 9 english JEE_Main