Answer
Verified
109.2k+ views
Hint: We all know that a compound pendulum is a rigid body allowed to oscillate about a horizontal axis passing through it. So the compound pendulum is almost simple but has an angular displacement associated with it. Derive the compound pendulum equation using necessary conditions for SHM and compare it with the equation of simple pendulum to find the right answer.
Complete step by step answer:
We know that the time period of a simple pendulum is given by:
$T = 2\pi \sqrt {\dfrac{L}{g}} $ …… (I)
Here, T is the time period, L is the length of the simple pendulum, g is the acceleration due to gravity.
We know that the time period of the compound pendulum is given by,
$T = 2\pi \sqrt {\dfrac{I}{{mgX}}} $ ……. (II)
Here, I is the moment of inertia about the point of suspension, and X is the distance of the centre of mass from the point of suspension, m is the mass of the compound pendulum.
We know that the moment of inertia about the point of suspension is given by,
$I = m{K^2} + m{X^2}$
Here, K is the radius of gyration.
We will now substitute $I = m{K^2} + m{X^2}$ in equation (II) to simplify the equation.
$ \Rightarrow T = 2\pi \sqrt {\dfrac{{m{K^2} + m{X^2}}}{{mgX}}} $ …… (III)
We will now compare eq(I) and eq(III) to obtain the equivalent length L.
$ \Rightarrow 2\pi \sqrt {\dfrac{{m{K^2} + m{X^2}}}{{mgX}}} = 2\pi \sqrt {\dfrac{L}{g}} $
We will simplify this equation further, and we will get,
$ \Rightarrow \dfrac{{{K^2} + {X^2}}}{X} = L$
$ \Rightarrow \dfrac{{{K^2}}}{X} + X = L$
Therefore, the equivalent length of the pendulum is $\dfrac{{{K^2}}}{X} + X$ , and the correct option is (B).
Note: The center of suspension and center of oscillation of a compound pendulum is interchangeable in nature for a compound pendulum. This can be practically proven using a Kater’s pendulum, also known as a reversible pendulum.
Complete step by step answer:
We know that the time period of a simple pendulum is given by:
$T = 2\pi \sqrt {\dfrac{L}{g}} $ …… (I)
Here, T is the time period, L is the length of the simple pendulum, g is the acceleration due to gravity.
We know that the time period of the compound pendulum is given by,
$T = 2\pi \sqrt {\dfrac{I}{{mgX}}} $ ……. (II)
Here, I is the moment of inertia about the point of suspension, and X is the distance of the centre of mass from the point of suspension, m is the mass of the compound pendulum.
We know that the moment of inertia about the point of suspension is given by,
$I = m{K^2} + m{X^2}$
Here, K is the radius of gyration.
We will now substitute $I = m{K^2} + m{X^2}$ in equation (II) to simplify the equation.
$ \Rightarrow T = 2\pi \sqrt {\dfrac{{m{K^2} + m{X^2}}}{{mgX}}} $ …… (III)
We will now compare eq(I) and eq(III) to obtain the equivalent length L.
$ \Rightarrow 2\pi \sqrt {\dfrac{{m{K^2} + m{X^2}}}{{mgX}}} = 2\pi \sqrt {\dfrac{L}{g}} $
We will simplify this equation further, and we will get,
$ \Rightarrow \dfrac{{{K^2} + {X^2}}}{X} = L$
$ \Rightarrow \dfrac{{{K^2}}}{X} + X = L$
Therefore, the equivalent length of the pendulum is $\dfrac{{{K^2}}}{X} + X$ , and the correct option is (B).
Note: The center of suspension and center of oscillation of a compound pendulum is interchangeable in nature for a compound pendulum. This can be practically proven using a Kater’s pendulum, also known as a reversible pendulum.
Recently Updated Pages
If x2 hx 21 0x2 3hx + 35 0h 0 has a common root then class 10 maths JEE_Main
The radius of a sector is 12 cm and the angle is 120circ class 10 maths JEE_Main
For what value of x function fleft x right x4 4x3 + class 10 maths JEE_Main
What is the area under the curve yx+x1 betweenx0 and class 10 maths JEE_Main
The volume of a sphere is dfrac43pi r3 cubic units class 10 maths JEE_Main
Which of the following is a good conductor of electricity class 10 chemistry JEE_Main