The equivalent length (L) of a simple pendulum, which gives the same frequency as the compound pendulum, is: (NOTE: X is the distance of the centre of mass from the point of suspension.)
A) ${K^2}/X$
B) $({K^2}/X) + X$
C) $({K^2}/X) - X$
C) $({K^2}/2X) + X$
Answer
Verified
122.7k+ views
Hint: We all know that a compound pendulum is a rigid body allowed to oscillate about a horizontal axis passing through it. So the compound pendulum is almost simple but has an angular displacement associated with it. Derive the compound pendulum equation using necessary conditions for SHM and compare it with the equation of simple pendulum to find the right answer.
Complete step by step answer:
We know that the time period of a simple pendulum is given by:
$T = 2\pi \sqrt {\dfrac{L}{g}} $ …… (I)
Here, T is the time period, L is the length of the simple pendulum, g is the acceleration due to gravity.
We know that the time period of the compound pendulum is given by,
$T = 2\pi \sqrt {\dfrac{I}{{mgX}}} $ ……. (II)
Here, I is the moment of inertia about the point of suspension, and X is the distance of the centre of mass from the point of suspension, m is the mass of the compound pendulum.
We know that the moment of inertia about the point of suspension is given by,
$I = m{K^2} + m{X^2}$
Here, K is the radius of gyration.
We will now substitute $I = m{K^2} + m{X^2}$ in equation (II) to simplify the equation.
$ \Rightarrow T = 2\pi \sqrt {\dfrac{{m{K^2} + m{X^2}}}{{mgX}}} $ …… (III)
We will now compare eq(I) and eq(III) to obtain the equivalent length L.
$ \Rightarrow 2\pi \sqrt {\dfrac{{m{K^2} + m{X^2}}}{{mgX}}} = 2\pi \sqrt {\dfrac{L}{g}} $
We will simplify this equation further, and we will get,
$ \Rightarrow \dfrac{{{K^2} + {X^2}}}{X} = L$
$ \Rightarrow \dfrac{{{K^2}}}{X} + X = L$
Therefore, the equivalent length of the pendulum is $\dfrac{{{K^2}}}{X} + X$ , and the correct option is (B).
Note: The center of suspension and center of oscillation of a compound pendulum is interchangeable in nature for a compound pendulum. This can be practically proven using a Kater’s pendulum, also known as a reversible pendulum.
Complete step by step answer:
We know that the time period of a simple pendulum is given by:
$T = 2\pi \sqrt {\dfrac{L}{g}} $ …… (I)
Here, T is the time period, L is the length of the simple pendulum, g is the acceleration due to gravity.
We know that the time period of the compound pendulum is given by,
$T = 2\pi \sqrt {\dfrac{I}{{mgX}}} $ ……. (II)
Here, I is the moment of inertia about the point of suspension, and X is the distance of the centre of mass from the point of suspension, m is the mass of the compound pendulum.
We know that the moment of inertia about the point of suspension is given by,
$I = m{K^2} + m{X^2}$
Here, K is the radius of gyration.
We will now substitute $I = m{K^2} + m{X^2}$ in equation (II) to simplify the equation.
$ \Rightarrow T = 2\pi \sqrt {\dfrac{{m{K^2} + m{X^2}}}{{mgX}}} $ …… (III)
We will now compare eq(I) and eq(III) to obtain the equivalent length L.
$ \Rightarrow 2\pi \sqrt {\dfrac{{m{K^2} + m{X^2}}}{{mgX}}} = 2\pi \sqrt {\dfrac{L}{g}} $
We will simplify this equation further, and we will get,
$ \Rightarrow \dfrac{{{K^2} + {X^2}}}{X} = L$
$ \Rightarrow \dfrac{{{K^2}}}{X} + X = L$
Therefore, the equivalent length of the pendulum is $\dfrac{{{K^2}}}{X} + X$ , and the correct option is (B).
Note: The center of suspension and center of oscillation of a compound pendulum is interchangeable in nature for a compound pendulum. This can be practically proven using a Kater’s pendulum, also known as a reversible pendulum.
Recently Updated Pages
The ratio of the diameters of two metallic rods of class 11 physics JEE_Main
What is the difference between Conduction and conv class 11 physics JEE_Main
Mark the correct statements about the friction between class 11 physics JEE_Main
Find the acceleration of the wedge towards the right class 11 physics JEE_Main
A standing wave is formed by the superposition of two class 11 physics JEE_Main
Derive an expression for work done by the gas in an class 11 physics JEE_Main
Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility & More
JEE Main Login 2045: Step-by-Step Instructions and Details
Class 11 JEE Main Physics Mock Test 2025
JEE Main Chemistry Question Paper with Answer Keys and Solutions
JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking
JEE Main 2023 January 24 Shift 2 Question Paper with Answer Keys & Solutions
Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs
NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements
NCERT Solutions for Class 11 Physics Chapter 9 Mechanical Properties of Fluids
Units and Measurements Class 11 Notes: CBSE Physics Chapter 1
JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More
NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line