Answer
Verified
110.4k+ views
Hint: First we calculate distance of an image for given two distances of object as \[25cm\] and \[50cm\]. Then we calculate magnification by formula used in case of distance of an object and an image.
Formula used:
We are using lens formula \[\dfrac{1}{f} = \dfrac{1}{v} - \dfrac{1}{u}\] to calculate \[v\] in both distance of an object \[u\]. Magnification is calculated by \[m = \dfrac{{ - v}}{u}\].
Complete step by step solution:
Given: focal length of biconvex lens, \[f = 20\], distance of an object \[u = {\text{ }}25{\text{ }}cm\] and \[50\]\[cm\].
First we calculate the distance of the image for \[u = {\text{ }}25{\text{ }}cm\].
We know that the lens formula is given as
\[\dfrac{1}{f} = \dfrac{1}{v} - \dfrac{1}{u}\]
\[ \Rightarrow \dfrac{1}{v} = \dfrac{1}{f} + \dfrac{1}{u}\]
\[
\dfrac{1}{v} = \dfrac{1}{{20}} + \dfrac{1}{{( - 25)}} = \dfrac{1}{{20}} - \dfrac{1}{{25}} \\
\Rightarrow \dfrac{1}{v} = \dfrac{{5 - 4}}{{100}} = \dfrac{1}{{100}} \\
v = 100{\text{ }}cm \\
\]
Hence, the distance of the object for \[u = {\text{ }}25{\text{ }}cm\] is \[v = 100{\text{ }}cm\].
Magnification for \[u = {\text{ }}25{\text{ }}cm\] is given by, \[{m_{25}} = \dfrac{{ - v}}{u}\]
\[
{m_{25}} = \dfrac{{ - v}}{u} \\
{m_{25}} = \dfrac{{ - 100}}{{ - 25}} = 4 \\
\]
Again we calculate distance of an image for
\[\dfrac{1}{v} = \dfrac{1}{f} + \dfrac{1}{u}\]
\[
\dfrac{1}{v} = \dfrac{1}{{20}} + \dfrac{1}{{( - 50)}} = \dfrac{1}{{20}} - \dfrac{1}{{50}} \\
\Rightarrow \dfrac{1}{v} = \dfrac{{5 - 2}}{{100}} = \dfrac{3}{{100}} \\
\therefore v = \dfrac{{100}}{3}{\text{ }}cm \\
\]
Hence, distance of an image for \[u = - 50{\text{ }}cm\] is \[v = \dfrac{{100}}{3}{\text{ }}cm\].
And magnification for is given by, \[{m_{50}} = \dfrac{{ - v}}{u}\]
\[
{m_{50}} = \dfrac{{ - \dfrac{{100}}{3}}}{{ - 50}} = \dfrac{{100}}{{50 \times 3}} \\
{m_{50}} = \dfrac{2}{3} \\
\]
Hence, the ratio of \[{m_{25}}\]to \[{m_{50}}\], i.e. \[{m_{25}}:{m_{50}}\] is given by
\[
\dfrac{{{m_{25}}}}{{{m_{50}}}} = \dfrac{4}{{\dfrac{2}{3}}} \\
\Rightarrow \dfrac{{{m_{25}}}}{{{m_{50}}}} = 4 \times \dfrac{3}{2} = 6 \\
\therefore {m_{25}}:{m_{50}} = 6 \\
\]
Hence, the required ratio is given by, \[{m_{25}}:{m_{50}} = 6\]
Therefore, the correct option is C.
Additional information:
The ratio of the height of an image to the height of an object is known as Magnification of a lens. It is also described as the ratio of image distance to the object distance. The distance of the object is \[u\], the distance of the image is \[v\]. Then we calculate magnification of a lens by the formula \[m = \dfrac{{ - v}}{u}\]. In case of height: height of image=\[h'\] and height of an object = \[h\]. Then, magnification of a lens is given by \[m = \dfrac{{h'}}{h}\].
Note: We know that distance taken in the lens may be positive or negative. Students must be careful to choose the sign for \[u\] and \[v\]. Students must choose negative signs for distance taken for objects, i.e., \[u\].
Here magnification is calculated by only with \[m = \dfrac{{ - v}}{u}\] not by \[m = \dfrac{{h'}}{h}\]. We can’t use \[m = \dfrac{{h'}}{h}\] because in question the height of the image and object is not given. Students must choose the correct formula for calculating magnification.
Formula used:
We are using lens formula \[\dfrac{1}{f} = \dfrac{1}{v} - \dfrac{1}{u}\] to calculate \[v\] in both distance of an object \[u\]. Magnification is calculated by \[m = \dfrac{{ - v}}{u}\].
Complete step by step solution:
Given: focal length of biconvex lens, \[f = 20\], distance of an object \[u = {\text{ }}25{\text{ }}cm\] and \[50\]\[cm\].
First we calculate the distance of the image for \[u = {\text{ }}25{\text{ }}cm\].
We know that the lens formula is given as
\[\dfrac{1}{f} = \dfrac{1}{v} - \dfrac{1}{u}\]
\[ \Rightarrow \dfrac{1}{v} = \dfrac{1}{f} + \dfrac{1}{u}\]
\[
\dfrac{1}{v} = \dfrac{1}{{20}} + \dfrac{1}{{( - 25)}} = \dfrac{1}{{20}} - \dfrac{1}{{25}} \\
\Rightarrow \dfrac{1}{v} = \dfrac{{5 - 4}}{{100}} = \dfrac{1}{{100}} \\
v = 100{\text{ }}cm \\
\]
Hence, the distance of the object for \[u = {\text{ }}25{\text{ }}cm\] is \[v = 100{\text{ }}cm\].
Magnification for \[u = {\text{ }}25{\text{ }}cm\] is given by, \[{m_{25}} = \dfrac{{ - v}}{u}\]
\[
{m_{25}} = \dfrac{{ - v}}{u} \\
{m_{25}} = \dfrac{{ - 100}}{{ - 25}} = 4 \\
\]
Again we calculate distance of an image for
\[\dfrac{1}{v} = \dfrac{1}{f} + \dfrac{1}{u}\]
\[
\dfrac{1}{v} = \dfrac{1}{{20}} + \dfrac{1}{{( - 50)}} = \dfrac{1}{{20}} - \dfrac{1}{{50}} \\
\Rightarrow \dfrac{1}{v} = \dfrac{{5 - 2}}{{100}} = \dfrac{3}{{100}} \\
\therefore v = \dfrac{{100}}{3}{\text{ }}cm \\
\]
Hence, distance of an image for \[u = - 50{\text{ }}cm\] is \[v = \dfrac{{100}}{3}{\text{ }}cm\].
And magnification for is given by, \[{m_{50}} = \dfrac{{ - v}}{u}\]
\[
{m_{50}} = \dfrac{{ - \dfrac{{100}}{3}}}{{ - 50}} = \dfrac{{100}}{{50 \times 3}} \\
{m_{50}} = \dfrac{2}{3} \\
\]
Hence, the ratio of \[{m_{25}}\]to \[{m_{50}}\], i.e. \[{m_{25}}:{m_{50}}\] is given by
\[
\dfrac{{{m_{25}}}}{{{m_{50}}}} = \dfrac{4}{{\dfrac{2}{3}}} \\
\Rightarrow \dfrac{{{m_{25}}}}{{{m_{50}}}} = 4 \times \dfrac{3}{2} = 6 \\
\therefore {m_{25}}:{m_{50}} = 6 \\
\]
Hence, the required ratio is given by, \[{m_{25}}:{m_{50}} = 6\]
Therefore, the correct option is C.
Additional information:
The ratio of the height of an image to the height of an object is known as Magnification of a lens. It is also described as the ratio of image distance to the object distance. The distance of the object is \[u\], the distance of the image is \[v\]. Then we calculate magnification of a lens by the formula \[m = \dfrac{{ - v}}{u}\]. In case of height: height of image=\[h'\] and height of an object = \[h\]. Then, magnification of a lens is given by \[m = \dfrac{{h'}}{h}\].
Note: We know that distance taken in the lens may be positive or negative. Students must be careful to choose the sign for \[u\] and \[v\]. Students must choose negative signs for distance taken for objects, i.e., \[u\].
Here magnification is calculated by only with \[m = \dfrac{{ - v}}{u}\] not by \[m = \dfrac{{h'}}{h}\]. We can’t use \[m = \dfrac{{h'}}{h}\] because in question the height of the image and object is not given. Students must choose the correct formula for calculating magnification.
Recently Updated Pages
Write an article on the need and importance of sports class 10 english JEE_Main
Write a composition in approximately 450 500 words class 10 english JEE_Main
Arrange the sentences P Q R between S1 and S5 such class 10 english JEE_Main
If x2 hx 21 0x2 3hx + 35 0h 0 has a common root then class 10 maths JEE_Main
The radius of a sector is 12 cm and the angle is 120circ class 10 maths JEE_Main
For what value of x function fleft x right x4 4x3 + class 10 maths JEE_Main
Other Pages
Electric field due to uniformly charged sphere class 12 physics JEE_Main
If a wire of resistance R is stretched to double of class 12 physics JEE_Main
In Searles apparatus when the experimental wire is class 11 physics JEE_Main
The energy stored is a condenser is in the form of class 12 physics JEE_Main
Excluding stoppages the speed of a bus is 54 kmph and class 11 maths JEE_Main