The function \[f\left( x \right) = {{\text{x}}^2} + 2x - 5\] is strictly increasing in the interval
A. $\left( { - \infty , - 1} \right)$
B. $\left( { - \infty , - 1} \right]$
C. $\left[ { - 1,\infty } \right)$
D. $\left( { - 1,\infty } \right)$
Answer
Verified
123k+ views
Hint: Differentiate the equation and equate it with 0. Condition of minima and maxima is when the sign of double derivative is positive it’s minima point and when it's negative its maxima point.
We have been given
\[f\left( x \right) = {{\text{x}}^2} + 2x - 5\]
As coefficient of ${{\text{x}}^2}$ is positive so we will get a local minima in this equation
Now when we differentiate the equation we get
$f'\left( x \right) = 2x + 2$
To find the local minima we need to equate it with 0
So, by equating $f'\left( x \right) = 0$ we get,
$2x + 2 = 0$
$ \Rightarrow x = - 1$
Now that we have the minima we can observe the points in right and left to it.
So for
$x < - 1;$ $f'\left( x \right) < 0$
And
$x > - 1;$ $f'\left( x \right) > 0$
So, as $f'\left( x \right) > 0$ for $x > - 1$
Therefore, $f\left( x \right)$ is strictly increasing in $\left( { - 1,\infty } \right)$.
Hence correct Option is D.
Note: In this question firstly we differentiate the given equation and equate it with 0. After equating them we get the extreme points which in this case is local minima. Now, we observe the neighbourhood of the point and get our answer.
We have been given
\[f\left( x \right) = {{\text{x}}^2} + 2x - 5\]
As coefficient of ${{\text{x}}^2}$ is positive so we will get a local minima in this equation
Now when we differentiate the equation we get
$f'\left( x \right) = 2x + 2$
To find the local minima we need to equate it with 0
So, by equating $f'\left( x \right) = 0$ we get,
$2x + 2 = 0$
$ \Rightarrow x = - 1$
Now that we have the minima we can observe the points in right and left to it.
So for
$x < - 1;$ $f'\left( x \right) < 0$
And
$x > - 1;$ $f'\left( x \right) > 0$
So, as $f'\left( x \right) > 0$ for $x > - 1$
Therefore, $f\left( x \right)$ is strictly increasing in $\left( { - 1,\infty } \right)$.
Hence correct Option is D.
Note: In this question firstly we differentiate the given equation and equate it with 0. After equating them we get the extreme points which in this case is local minima. Now, we observe the neighbourhood of the point and get our answer.
Recently Updated Pages
The real roots of the equation x23 + x13 2 0 are A class 11 maths JEE_Main
Find the reminder when 798 is divided by 5 class 11 maths JEE_Main
Let A and B be two sets containing 2 elements and 4 class 11 maths JEE_Main
A ray of light moving parallel to the xaxis gets reflected class 11 maths JEE_Main
A man on the top of a vertical observation tower o-class-11-maths-JEE_Main
If there are 25 railway stations on a railway line class 11 maths JEE_Main
Trending doubts
JEE Mains 2025: Check Important Dates, Syllabus, Exam Pattern, Fee and Updates
JEE Main Login 2045: Step-by-Step Instructions and Details
JEE Main Chemistry Question Paper with Answer Keys and Solutions
JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking
JEE Main 2023 January 24 Shift 2 Question Paper with Answer Keys & Solutions
JEE Main Chemistry Exam Pattern 2025
Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs
NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines
NCERT Solutions for Class 11 Maths Chapter 12 Limits and Derivatives
NCERT Solutions for Class 11 Maths Chapter 8 Sequences and Series
NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections
NCERT Solutions for Class 11 Maths Chapter 13 Statistics