
The general value of $\theta $ satisfying the equation $2{{\sin }^{2}}\theta -3\sin \theta -2=0$ is
A. $n\pi +{{(-1)}^{n}}\dfrac{\pi }{6}$
В. $n\pi +{{(-1)}^{n}}\dfrac{\pi }{2}$
C. $n\pi +{{(-1)}^{n}}\dfrac{5\pi }{6}$
D. $n\pi +{{(-1)}^{n}}\dfrac{7\pi }{6}$
Answer
232.8k+ views
Hint: To solve this question, we need to use the angle sum property of a triangle according to which the sum of all the angles of a triangle is $\pi $. A trigonometric equation typically has several solutions or an infinite number of solutions because all trigonometric ratios are periodic. Then, using trigonometric tan techniques, we will simplify the given equation to obtain the final equation.
Formula Used: The trigonometric formulas are:
$\sin (-\theta )=-\sin \theta $
Complete step-by-step solution: A trigonometric equation will also have a generic solution, which is stated in a generalized form in terms of "n" and contains all the values that would fulfill the given equation. As per the $\sin \theta $ formula, the sine of an angle $\theta $, in a right-angled triangle is equal to the ratio of the opposite side and hypotenuse.
The mostly applied value of $\theta $ satisfying both the equations
$\sin \theta =\dfrac{1}{2}$
We will take the angle sum property of the triangle and derive the equation of the angle. Hence, the most general value of θ satisfying the equations $\sin \theta \text{=}\sin \alpha $ and $\text{cos}\theta \text{=cos}\alpha $ is $\theta =n\pi +\alpha $.
$\begin{align}
& 2{{\sin }^{2}}\theta -3\sin \theta -2=0 \\
& \Rightarrow (2\sin \theta +1)(\sin \theta -2)=0 \\
& \Rightarrow \left| \sin \theta =\sin \left( \dfrac{-\pi }{6} \right) \right| \\
& \Rightarrow \theta =n\pi +{{(-1)}^{n}}\left( \dfrac{-\pi }{6} \right) \\
\end{align}$
$\begin{align}
& \Rightarrow \theta =n\pi +{{(-1)}^{n+1}}\left( \dfrac{\pi }{6} \right) \\
& \Rightarrow \theta =n\pi +{{(-1)}^{n}}\left( \dfrac{7\pi }{6} \right) \\
\end{align}$
Option ‘D’ is correct
Note: The sine of the angle divided by the cosine of that angle is known as the trigonometric ratio. It can be characterized as the proportion of the perpendicular side to the neighboring side of a right-angled triangle's sides. A solution to an ‘n-order’ ordinary differential equation that uses precisely ‘n’ necessary arbitrary constants.
Formula Used: The trigonometric formulas are:
$\sin (-\theta )=-\sin \theta $
Complete step-by-step solution: A trigonometric equation will also have a generic solution, which is stated in a generalized form in terms of "n" and contains all the values that would fulfill the given equation. As per the $\sin \theta $ formula, the sine of an angle $\theta $, in a right-angled triangle is equal to the ratio of the opposite side and hypotenuse.
The mostly applied value of $\theta $ satisfying both the equations
$\sin \theta =\dfrac{1}{2}$
We will take the angle sum property of the triangle and derive the equation of the angle. Hence, the most general value of θ satisfying the equations $\sin \theta \text{=}\sin \alpha $ and $\text{cos}\theta \text{=cos}\alpha $ is $\theta =n\pi +\alpha $.
$\begin{align}
& 2{{\sin }^{2}}\theta -3\sin \theta -2=0 \\
& \Rightarrow (2\sin \theta +1)(\sin \theta -2)=0 \\
& \Rightarrow \left| \sin \theta =\sin \left( \dfrac{-\pi }{6} \right) \right| \\
& \Rightarrow \theta =n\pi +{{(-1)}^{n}}\left( \dfrac{-\pi }{6} \right) \\
\end{align}$
$\begin{align}
& \Rightarrow \theta =n\pi +{{(-1)}^{n+1}}\left( \dfrac{\pi }{6} \right) \\
& \Rightarrow \theta =n\pi +{{(-1)}^{n}}\left( \dfrac{7\pi }{6} \right) \\
\end{align}$
Option ‘D’ is correct
Note: The sine of the angle divided by the cosine of that angle is known as the trigonometric ratio. It can be characterized as the proportion of the perpendicular side to the neighboring side of a right-angled triangle's sides. A solution to an ‘n-order’ ordinary differential equation that uses precisely ‘n’ necessary arbitrary constants.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding the Electric Field of a Uniformly Charged Ring

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 11 Maths Chapter 12 Limits and Derivatives (2025-26)

NCERT Solutions For Class 11 Maths Chapter 10 Conic Sections (2025-26)

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

