The given figure shows three blocks in contact and kept on a smooth horizontal surface. What is the ratio of force exerted by block A on B to that of B on C?
A.$3:1$
B. $1:3$
C. $2:3$
D. $3:2$
Answer
Verified
116.4k+ views
Hint: Look at this problem considering different systems, first consider all three blocks as a system, check the external forces and then apply Newton’s Second law, then follow the same for all three individual blocks or the two blocks from which you will obtain the required forces.
Complete step by step answer:
From the figure we can see
the mass of the block A, ${m_A} = 5\,kg$
mass of the block B, ${m_B} = 2\,kg$
mass of the block C, ${m_C} = 1\,kg$
Therefore, total mass of three blocks,
$M = {m_A} + {m_B} + {m_C}$
$ \Rightarrow M = 5\,kg + 2\,kg + 1\,kg$
$\therefore M = 8\,kg$
According to Newton 2nd law force is the rate of change of momentum. That is,
$F = \dfrac{{dP}}{{dt}}$
Where $P$ is a momentum given by
$P = mv$
Substituting this in equation 1 we get
$F = m\dfrac{{dv}}{{dt}}$
So, Newton's second law can also be expressed as
$F = ma$
Where, $m$ is the mass and $a$ is the acceleration.
From this acceleration is equal to
$a = \dfrac{F}{M}$
On substituting the given values, we get
Acceleration of the block
$a = \,\dfrac{{16}}{8}\, = 2\,m/{s^2}$
Let ${F_{AB}}$ be the force of contact exerted by block A on B and let ${F_{BC}}$ be the force exerted by block B on C
So, we can write the net force on A as the force given on A minus contact force exerted by block A on B.
${m_A}a = F - {F_{AB}}$
That is,
$5 \times 2 = 16 - {F_{AB}}$
$ \Rightarrow {F_{AB}} = 6\,N$
Now, we can write the force on B as force on B due to A minus the force on C due to B.
${m_B}a = {F_{AB}} - {F_{CB}}$
That is,
$2 \times 2 = 6 - {F_{BC}}$
$ \Rightarrow {F_{BC}} = 2\,N$
Therefore,
The ratio of force exerted by block A on B to that of B on C is
$\dfrac{{{F_{AB}}}}{{{F_{BC}}}} = \dfrac{6}{2}$
$\therefore \dfrac{{{F_{AB}}}}{{{F_{BC}}}} = \dfrac{3}{1}$
So, the ratio of the two forces is 3:1 .
Thus, the answer is option A.
Note: The acceleration of the three blocks will be the same but net force on each block will be different due to the difference in mass of the blocks.
The contact force exerted by A on B is same as that of B on A. That is
${F_{AB}} = {F_{BA}}$
Also,
${F_{BC}} = {F_{CA}}$
Complete step by step answer:
From the figure we can see
the mass of the block A, ${m_A} = 5\,kg$
mass of the block B, ${m_B} = 2\,kg$
mass of the block C, ${m_C} = 1\,kg$
Therefore, total mass of three blocks,
$M = {m_A} + {m_B} + {m_C}$
$ \Rightarrow M = 5\,kg + 2\,kg + 1\,kg$
$\therefore M = 8\,kg$
According to Newton 2nd law force is the rate of change of momentum. That is,
$F = \dfrac{{dP}}{{dt}}$
Where $P$ is a momentum given by
$P = mv$
Substituting this in equation 1 we get
$F = m\dfrac{{dv}}{{dt}}$
So, Newton's second law can also be expressed as
$F = ma$
Where, $m$ is the mass and $a$ is the acceleration.
From this acceleration is equal to
$a = \dfrac{F}{M}$
On substituting the given values, we get
Acceleration of the block
$a = \,\dfrac{{16}}{8}\, = 2\,m/{s^2}$
Let ${F_{AB}}$ be the force of contact exerted by block A on B and let ${F_{BC}}$ be the force exerted by block B on C
So, we can write the net force on A as the force given on A minus contact force exerted by block A on B.
${m_A}a = F - {F_{AB}}$
That is,
$5 \times 2 = 16 - {F_{AB}}$
$ \Rightarrow {F_{AB}} = 6\,N$
Now, we can write the force on B as force on B due to A minus the force on C due to B.
${m_B}a = {F_{AB}} - {F_{CB}}$
That is,
$2 \times 2 = 6 - {F_{BC}}$
$ \Rightarrow {F_{BC}} = 2\,N$
Therefore,
The ratio of force exerted by block A on B to that of B on C is
$\dfrac{{{F_{AB}}}}{{{F_{BC}}}} = \dfrac{6}{2}$
$\therefore \dfrac{{{F_{AB}}}}{{{F_{BC}}}} = \dfrac{3}{1}$
So, the ratio of the two forces is 3:1 .
Thus, the answer is option A.
Note: The acceleration of the three blocks will be the same but net force on each block will be different due to the difference in mass of the blocks.
The contact force exerted by A on B is same as that of B on A. That is
${F_{AB}} = {F_{BA}}$
Also,
${F_{BC}} = {F_{CA}}$
Recently Updated Pages
Uniform Acceleration - Definition, Equation, Examples, and FAQs
How to find Oxidation Number - Important Concepts for JEE
How Electromagnetic Waves are Formed - Important Concepts for JEE
Electrical Resistance - Important Concepts and Tips for JEE
Average Atomic Mass - Important Concepts and Tips for JEE
Chemical Equation - Important Concepts and Tips for JEE
Trending doubts
JEE Main 2025: Application Form (Out), Exam Dates (Released), Eligibility & More
JEE Main Login 2045: Step-by-Step Instructions and Details
JEE Main Chemistry Question Paper with Answer Keys and Solutions
Learn About Angle Of Deviation In Prism: JEE Main Physics 2025
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
Charging and Discharging of Capacitor
Other Pages
NCERT Solutions for Class 11 Physics Chapter 7 Gravitation
NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements
NCERT Solutions for Class 11 Physics Chapter 9 Mechanical Properties of Fluids
Units and Measurements Class 11 Notes - CBSE Physics Chapter 1
NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line
NCERT Solutions for Class 11 Physics Chapter 8 Mechanical Properties of Solids