The half-life period of a second order reaction is:
(A) Proportional to the initial concentration of reactants
(B) Independent of the initial concentration of reactants
(C) Inversely proportional to the initial concentration of reactants
(D) Inversely proportional to the square of initial concentration of the reactants
Answer
Verified
415.6k+ views
Hint: The half life period of any reaction can be understood as the time that is needed for the concentration of the reactants to be reduced to exactly half of the original value of their concentrations.
Complete Step-by-Step answer:
The integrated form of the second order rate law can be represented as follows:
\[\dfrac{{d[A]}}{{dt}} = - k{[A]^2}\]
This equation can be simplified further and be represented as follows:
\[\dfrac{1}{{[A]}} = \dfrac{1}{{{{[A]}_0}}} + kt\]
\[\dfrac{1}{{[A]}} - \dfrac{1}{{{{[A]}_0}}} = kt\]
Now, since \[{[A]_{{t_{1/2}}}} = \dfrac{1}{2}{[A]_0}\];
When \[t = {t_{1/2}}\], the given simplified rate equation transforms to:
\\[\dfrac{1}{{\dfrac{1}{2}{{[A]}_0}}} - \dfrac{1}{{{{[A]}_0}}} = k{t_{1/2}}\]
Hence,
\[\dfrac{{2 - 1}}{{{{[A]}_0}}} = k{t_{1/2}}\]
\[\dfrac{1}{{{{[A]}_0}}} = k{t_{1/2}}\]
From this equation above, we have established a relation between the concentration of the reactant and the half-life period, for a second order reaction.
Upon observation, we can deduce that in second order reactions, the half-life period is inversely proportional to the initial concentration of the reactant.
Hence, Option C is the correct option.
Note: This inverse relationship indirectly states that when the initial concentration of the reactant is increased, there is a higher probability of the two reactant molecules interacting to form a product. This equation also implies that since the half-life is longer when the concentrations are low, species decaying according to second-order kinetics may exist for a longer amount of time if their initial concentrations are small.
Complete Step-by-Step answer:
The integrated form of the second order rate law can be represented as follows:
\[\dfrac{{d[A]}}{{dt}} = - k{[A]^2}\]
This equation can be simplified further and be represented as follows:
\[\dfrac{1}{{[A]}} = \dfrac{1}{{{{[A]}_0}}} + kt\]
\[\dfrac{1}{{[A]}} - \dfrac{1}{{{{[A]}_0}}} = kt\]
Now, since \[{[A]_{{t_{1/2}}}} = \dfrac{1}{2}{[A]_0}\];
When \[t = {t_{1/2}}\], the given simplified rate equation transforms to:
\\[\dfrac{1}{{\dfrac{1}{2}{{[A]}_0}}} - \dfrac{1}{{{{[A]}_0}}} = k{t_{1/2}}\]
Hence,
\[\dfrac{{2 - 1}}{{{{[A]}_0}}} = k{t_{1/2}}\]
\[\dfrac{1}{{{{[A]}_0}}} = k{t_{1/2}}\]
From this equation above, we have established a relation between the concentration of the reactant and the half-life period, for a second order reaction.
Upon observation, we can deduce that in second order reactions, the half-life period is inversely proportional to the initial concentration of the reactant.
Hence, Option C is the correct option.
Note: This inverse relationship indirectly states that when the initial concentration of the reactant is increased, there is a higher probability of the two reactant molecules interacting to form a product. This equation also implies that since the half-life is longer when the concentrations are low, species decaying according to second-order kinetics may exist for a longer amount of time if their initial concentrations are small.
Recently Updated Pages
JEE Main 2025: Application Form, Exam Dates, Eligibility, and More
A team played 40 games in a season and won 24 of them class 9 maths JEE_Main
Here are the shadows of 3 D objects when seen under class 9 maths JEE_Main
A motorcyclist of mass m is to negotiate a curve of class 9 physics JEE_Main
What does a hydrometer consist of A A cylindrical stem class 9 physics JEE_Main
Madhuri went to a supermarket The price changes are class 9 maths JEE_Main
Trending doubts
Physics Average Value and RMS Value JEE Main 2025
Free Radical Substitution Mechanism of Alkanes for JEE Main 2025
Electron Gain Enthalpy and Electron Affinity for JEE
Collision - Important Concepts and Tips for JEE
Clemmenson and Wolff Kishner Reductions for JEE
Classification of Drugs
Other Pages
NCERT Solutions for Class 12 Chemistry Chapter 1 Solutions
NCERT Solutions for Class 12 Chemistry Chapter 8 Aldehydes Ketones and Carboxylic Acids
NCERT Solutions for Class 12 Chemistry Chapter 3 Chemical Kinetics
NCERT Solutions for Class 12 Chemistry In Hindi Chapter 10 Haloalkanes and Haloarenes In Hindi Mediem
JEE Main Chemistry Exam Pattern 2025
JEE Advanced 2025 Revision Notes for Physics on Modern Physics