The increase in length on stretching a wire is 0.05%. If its poisson's ratio is 0.4, then its diameter:
(A) Reduce by 0.02%
(B) Reduce by 0.1%
(C) Reduce by 0.03%
(D) Decrease by 0.4%
Answer
Verified
123k+ views
Hint: The Poisson’s ratio for a wire is given. When the wire is stretched, the length increases by 0.05%. Now by definition, we know the Poisson’s ratio $\sigma = \dfrac{{{\text{lateral strain}}}}{{{\text{longitudinal strain}}}}$. Longitudinal strain is given, so we can find the lateral strain by substituting the given values.
Formula used:
Poisson’s ratio $\sigma = \dfrac{{{\text{lateral strain}}}}{{{\text{longitudinal strain}}}}$ $ \Rightarrow \sigma = \dfrac{{\dfrac{{\Delta D}}{D}}}{{\dfrac{{\Delta l}}{l}}}$
Complete step by step solution:
Let D and l be the diameter and length of the given wire respectively.
When the wire is stretched, the length increases by 0.05%.
We know, the Poisson’s ratio $\sigma = \dfrac{{{\text{lateral strain}}}}{{{\text{longitudinal strain}}}}$
$ \Rightarrow \sigma = \dfrac{{\dfrac{{\Delta D}}{D}}}{{\dfrac{{\Delta l}}{l}}} = 0.4$
Here, $\dfrac{{\Delta l}}{l}$= 0.05
$ \Rightarrow \sigma = \dfrac{{\dfrac{{\Delta D}}{D}}}{{0.05}} = 0.4$
$ \Rightarrow \dfrac{{\Delta D}}{D} = 0.05 \times 0.4 = 0.02$
Therefore, the correct answer is option (A), reduced by 0.02%.
Note: If the length of the wire increases on stretching, the diameter will decrease simultaneously. However, the ratio of lateral and longitudinal strain is always a constant for a material and is defined as the Poisson’s Ratio. It is denoted by the letter $\sigma $.
Formula used:
Poisson’s ratio $\sigma = \dfrac{{{\text{lateral strain}}}}{{{\text{longitudinal strain}}}}$ $ \Rightarrow \sigma = \dfrac{{\dfrac{{\Delta D}}{D}}}{{\dfrac{{\Delta l}}{l}}}$
Complete step by step solution:
Let D and l be the diameter and length of the given wire respectively.
When the wire is stretched, the length increases by 0.05%.
We know, the Poisson’s ratio $\sigma = \dfrac{{{\text{lateral strain}}}}{{{\text{longitudinal strain}}}}$
$ \Rightarrow \sigma = \dfrac{{\dfrac{{\Delta D}}{D}}}{{\dfrac{{\Delta l}}{l}}} = 0.4$
Here, $\dfrac{{\Delta l}}{l}$= 0.05
$ \Rightarrow \sigma = \dfrac{{\dfrac{{\Delta D}}{D}}}{{0.05}} = 0.4$
$ \Rightarrow \dfrac{{\Delta D}}{D} = 0.05 \times 0.4 = 0.02$
Therefore, the correct answer is option (A), reduced by 0.02%.
Note: If the length of the wire increases on stretching, the diameter will decrease simultaneously. However, the ratio of lateral and longitudinal strain is always a constant for a material and is defined as the Poisson’s Ratio. It is denoted by the letter $\sigma $.
Recently Updated Pages
The ratio of the diameters of two metallic rods of class 11 physics JEE_Main
What is the difference between Conduction and conv class 11 physics JEE_Main
Mark the correct statements about the friction between class 11 physics JEE_Main
Find the acceleration of the wedge towards the right class 11 physics JEE_Main
A standing wave is formed by the superposition of two class 11 physics JEE_Main
Derive an expression for work done by the gas in an class 11 physics JEE_Main
Trending doubts
JEE Mains 2025: Check Important Dates, Syllabus, Exam Pattern, Fee and Updates
JEE Main Login 2045: Step-by-Step Instructions and Details
Class 11 JEE Main Physics Mock Test 2025
JEE Main Chemistry Question Paper with Answer Keys and Solutions
JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking
JEE Main 2023 January 24 Shift 2 Question Paper with Answer Keys & Solutions
Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs
NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements
NCERT Solutions for Class 11 Physics Chapter 9 Mechanical Properties of Fluids
Units and Measurements Class 11 Notes: CBSE Physics Chapter 1
JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More
NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line