Answer
Verified
110.7k+ views
Hint: In this question, we are asked to find out the valid relation. We use the simple formula of the acceleration and integrate that equation with applying proper limits. As acceleration is a function of time, we get the correct relation.
Formula used:
$\vec a = \dfrac{{dv}}{{dt}}$
Here, \[{{\vec a}}\;\]is the acceleration,
${\text{dv}}$ is the velocity (small)
${\text{dt}}$ is the time (small)
Complete step by step answer:
Let’s define all the terms which are given in the question.
We have given the initial velocity of the particle i.e. $u$ at$\left( {{\text{t = 0}}} \right)$.
The acceleration is given by $\alpha {t^{\dfrac{3}{2}}}$.
That is, $\vec a = \alpha {t^{\dfrac{3}{2}}}$
Here, the acceleration is dependent on time
Hence, we can say acceleration is a function of time.
Now, from the formula of acceleration,
That is,
$ \Rightarrow $ $\vec a = \dfrac{{dv}}{{dt}}$
$ \Rightarrow \vec adt\; = \;dv\;$ ………………………………… (1)
We know, acceleration is a function of time. The velocity is changing from ${\text{u}}$ to ${\text{v}}$ at time interval ${\text{t = 0}}$ to ${\text{t = t}}{\text{.}}$
Hence, integrating equation (1) with applying these values as limit, we get
$\int_0^t {adt} = \int_u^v {dv} $
Now, we are substituting the value of ${\text{a}}$,
We get,
$ \Rightarrow \int_0^t {\alpha {t^{\dfrac{3}{2}}}dt = \int_u^v {dv} } $
$ \Rightarrow \alpha \left[ {\dfrac{{{t^{\dfrac{3}{2} + 1}}}}{{\dfrac{3}{2} + 1}}} \right]_0^t = \left[ V \right]_u^v$
$ \Rightarrow \alpha \dfrac{2}{5}{t^{\dfrac{5}{2}}} = v - u$
So, $v - u\; = \;\dfrac{2}{5}\alpha {t^{\dfrac{5}{2}}}$
$v = \;u + \dfrac{2}{5}\alpha {t^{\dfrac{5}{2}}}$
This is the final relation for velocity.
Hence, the final answer is option (C) i.e. $v = \;u + \dfrac{2}{5}\alpha {t^{\dfrac{5}{2}}}$.
Additional Information:
$a = \dfrac{{\Delta v}}{{\Delta t}}$ Where $\Delta v = {v_f} - {v_i}$ and $\Delta t\; = {t_f} - {t_i}$.
The equation for acceleration may be written as
$a = \dfrac{{\Delta v}}{{\Delta t}} = \dfrac{{{v_f} - {v_i}}}{{{t_f} - {t_i}}}\;\_\_\left( 1 \right)$
Note that, ${t_f} - {t_i}$ is always positive as ${t_f} > \;{t_i}$ and it is called ‘elapsed time’.
Equation $\left( 1 \right)$ becomes
$a = \dfrac{{{v_f} - {v_i}}}{t}$
Note: Velocity is defined as the rate of change of distance with respect to time, whereas acceleration is defined as the rate of change of Speed. And both of them are vector quantities. To solve these types of questions, simply use the equation of motion, & if the quantity is changing at $t = 0$ to $t = t,$ then integrate it with respect to proper limits. This way you are able to solve such Questions.
Formula used:
$\vec a = \dfrac{{dv}}{{dt}}$
Here, \[{{\vec a}}\;\]is the acceleration,
${\text{dv}}$ is the velocity (small)
${\text{dt}}$ is the time (small)
Complete step by step answer:
Let’s define all the terms which are given in the question.
We have given the initial velocity of the particle i.e. $u$ at$\left( {{\text{t = 0}}} \right)$.
The acceleration is given by $\alpha {t^{\dfrac{3}{2}}}$.
That is, $\vec a = \alpha {t^{\dfrac{3}{2}}}$
Here, the acceleration is dependent on time
Hence, we can say acceleration is a function of time.
Now, from the formula of acceleration,
That is,
$ \Rightarrow $ $\vec a = \dfrac{{dv}}{{dt}}$
$ \Rightarrow \vec adt\; = \;dv\;$ ………………………………… (1)
We know, acceleration is a function of time. The velocity is changing from ${\text{u}}$ to ${\text{v}}$ at time interval ${\text{t = 0}}$ to ${\text{t = t}}{\text{.}}$
Hence, integrating equation (1) with applying these values as limit, we get
$\int_0^t {adt} = \int_u^v {dv} $
Now, we are substituting the value of ${\text{a}}$,
We get,
$ \Rightarrow \int_0^t {\alpha {t^{\dfrac{3}{2}}}dt = \int_u^v {dv} } $
$ \Rightarrow \alpha \left[ {\dfrac{{{t^{\dfrac{3}{2} + 1}}}}{{\dfrac{3}{2} + 1}}} \right]_0^t = \left[ V \right]_u^v$
$ \Rightarrow \alpha \dfrac{2}{5}{t^{\dfrac{5}{2}}} = v - u$
So, $v - u\; = \;\dfrac{2}{5}\alpha {t^{\dfrac{5}{2}}}$
$v = \;u + \dfrac{2}{5}\alpha {t^{\dfrac{5}{2}}}$
This is the final relation for velocity.
Hence, the final answer is option (C) i.e. $v = \;u + \dfrac{2}{5}\alpha {t^{\dfrac{5}{2}}}$.
Additional Information:
$a = \dfrac{{\Delta v}}{{\Delta t}}$ Where $\Delta v = {v_f} - {v_i}$ and $\Delta t\; = {t_f} - {t_i}$.
The equation for acceleration may be written as
$a = \dfrac{{\Delta v}}{{\Delta t}} = \dfrac{{{v_f} - {v_i}}}{{{t_f} - {t_i}}}\;\_\_\left( 1 \right)$
Note that, ${t_f} - {t_i}$ is always positive as ${t_f} > \;{t_i}$ and it is called ‘elapsed time’.
Equation $\left( 1 \right)$ becomes
$a = \dfrac{{{v_f} - {v_i}}}{t}$
Note: Velocity is defined as the rate of change of distance with respect to time, whereas acceleration is defined as the rate of change of Speed. And both of them are vector quantities. To solve these types of questions, simply use the equation of motion, & if the quantity is changing at $t = 0$ to $t = t,$ then integrate it with respect to proper limits. This way you are able to solve such Questions.
Recently Updated Pages
Write an article on the need and importance of sports class 10 english JEE_Main
Write a composition in approximately 450 500 words class 10 english JEE_Main
Arrange the sentences P Q R between S1 and S5 such class 10 english JEE_Main
If x2 hx 21 0x2 3hx + 35 0h 0 has a common root then class 10 maths JEE_Main
The radius of a sector is 12 cm and the angle is 120circ class 10 maths JEE_Main
For what value of x function fleft x right x4 4x3 + class 10 maths JEE_Main
Other Pages
If a wire of resistance R is stretched to double of class 12 physics JEE_Main
The energy stored is a condenser is in the form of class 12 physics JEE_Main
Excluding stoppages the speed of a bus is 54 kmph and class 11 maths JEE_Main
Electric field due to uniformly charged sphere class 12 physics JEE_Main
In Searles apparatus when the experimental wire is class 11 physics JEE_Main