![SearchIcon](https://vmkt.vedantu.com/vmkt/PROD/png/bdcdbbd8-08a7-4688-98e6-4aa54e5e0800-1733305962725-4102606384256179.png)
The internal resistance of two cells shown are \[0.1\Omega \] and \[0.3\Omega \]. If \[R = 0.2\Omega \], the potential difference across the cell:
![](https://www.vedantu.com/question-sets/cadfce87-25a3-4ede-8fda-ff12640ac4ea1522291050105390580.png)
A) B will be zero
B) A will be zero
C) A and B be \[2V\]
D) A will be \[ > 2V\] and B will be \[ < 2V\].
Answer
124.8k+ views
Hint: According, Kirchhoff’s voltage law (KVL), the algebraic sum of voltages across each element is zero. Kirchhoff’s voltage law is used to calculate the value of potential difference across the cell. From KVL, We get the value of current flowing through the circuit. Then we calculate potential difference across B by substituting the value of current in the KVL equation.
Formula used:
We apply Kirchhoff’s voltage law (KVL) in circuit. Then we calculate potential differences across B.
Complete step by step solution:
Given: Resistances are \[0.1\Omega \], \[0.3\Omega \] and \[0.2\Omega \]. Voltages are \[2V\] each.
Let us suppose that the current flowing through the circuit is I.
On applying: Kirchhoff’s voltage law (KVL) in given circuit , we get following equation
\[ - (0.2)I - (0.3)I + 2V - (0.1)I + 2V = 0\]
\[ \Rightarrow 0.6I = 4\]
\[ \Rightarrow I = \dfrac{4}{{0.6}} = \dfrac{{40}}{6}A\]
\[\therefore I = \dfrac{{20}}{3}A\]
Hence, current flows through the circuit, \[I = \dfrac{{20}}{3}A\]
Now, potential difference across B is calculated by
\[{V_1} - (0.3)\dfrac{{20}}{3} + 2V = {V_2}\]
\[ \Rightarrow {V_1} - 2V + 2V = {V_2}\]
\[ \Rightarrow {V_1} = {V_2}\]
\[\therefore\] Potential difference across \[B = {V_1} - {V_2} = 0\]
Hence, Potential difference across B is zero.
Therefore, the correct option is (D).
Additional information: Kirchhoff’s voltage law (KVL) is also known as the second rule of Kirchhoff’s. According to this rule, the algebraic sum of voltages in a closed circuit is zero. Kirchhoff’s voltage law is applicable for both AC and DC circuits. Voltage across passive elements in a closed circuit is always equivalent. The value of voltage is reverse to source voltage.
To measure the unknown standards such as current (I), Voltage (V) we use, Kirchhoff's laws are used, KVL is also used to find the direction of moving current in the circuit. This rule is very useful to solve complicated circuitries. To observe the transferal of power in the circuit, we use KVL in circuits.
Note: Students be careful to apply Kirchhoff’s voltage law (KVL) in circuit. Direction of current is mandatory to apply Kirchhoff’s voltage law.
Formula used:
We apply Kirchhoff’s voltage law (KVL) in circuit. Then we calculate potential differences across B.
Complete step by step solution:
Given: Resistances are \[0.1\Omega \], \[0.3\Omega \] and \[0.2\Omega \]. Voltages are \[2V\] each.
Let us suppose that the current flowing through the circuit is I.
On applying: Kirchhoff’s voltage law (KVL) in given circuit , we get following equation
\[ - (0.2)I - (0.3)I + 2V - (0.1)I + 2V = 0\]
\[ \Rightarrow 0.6I = 4\]
\[ \Rightarrow I = \dfrac{4}{{0.6}} = \dfrac{{40}}{6}A\]
\[\therefore I = \dfrac{{20}}{3}A\]
Hence, current flows through the circuit, \[I = \dfrac{{20}}{3}A\]
Now, potential difference across B is calculated by
\[{V_1} - (0.3)\dfrac{{20}}{3} + 2V = {V_2}\]
\[ \Rightarrow {V_1} - 2V + 2V = {V_2}\]
\[ \Rightarrow {V_1} = {V_2}\]
\[\therefore\] Potential difference across \[B = {V_1} - {V_2} = 0\]
Hence, Potential difference across B is zero.
Therefore, the correct option is (D).
Additional information: Kirchhoff’s voltage law (KVL) is also known as the second rule of Kirchhoff’s. According to this rule, the algebraic sum of voltages in a closed circuit is zero. Kirchhoff’s voltage law is applicable for both AC and DC circuits. Voltage across passive elements in a closed circuit is always equivalent. The value of voltage is reverse to source voltage.
To measure the unknown standards such as current (I), Voltage (V) we use, Kirchhoff's laws are used, KVL is also used to find the direction of moving current in the circuit. This rule is very useful to solve complicated circuitries. To observe the transferal of power in the circuit, we use KVL in circuits.
Note: Students be careful to apply Kirchhoff’s voltage law (KVL) in circuit. Direction of current is mandatory to apply Kirchhoff’s voltage law.
Recently Updated Pages
Young's Double Slit Experiment Step by Step Derivation
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Difference Between Circuit Switching and Packet Switching
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Difference Between Mass and Weight
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Main Participating Colleges 2024 - A Complete List of Top Colleges
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Main Maths Paper Pattern 2025 – Marking, Sections & Tips
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Sign up for JEE Main 2025 Live Classes - Vedantu
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility & More
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
The formula of the kinetic mass of a photon is Where class 12 physics JEE_Main
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Main 2023 January 24 Shift 2 Question Paper with Answer Keys & Solutions
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Learn About Angle Of Deviation In Prism: JEE Main Physics 2025
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Main Login 2045: Step-by-Step Instructions and Details
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Dual Nature of Radiation and Matter Class 12 Notes: CBSE Physics Chapter 11
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Electric field due to uniformly charged sphere class 12 physics JEE_Main
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Ideal and Non-Ideal Solutions Raoult's Law - JEE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Mains 2025 Correction Window Date (Out) – Check Procedure and Fees Here!
![arrow-right](/cdn/images/seo-templates/arrow-right.png)