
The length of second pendulum is:
A) $100\,cm$
B) $99\,cm$
C) $99.4\,cm$
D) $98\,cm$
Answer
232.8k+ views
Hint: Use the formula of the time period of the pendulum and substitute the value of the length of the pendulum as $2\,s$ and the acceleration due to gravity as $9.8$. The obtained equation is simplified, to obtain the value of the length of the pendulum.
Formula used:
The time period is given by
$T = 2\pi \sqrt {\dfrac{l}{g}} $
Where $T$ is the time period of the pendulum, $l$ is the length of the pendulum and $g$ is the acceleration due to gravity.
Complete step by step solution:
It is known that the time period of the second pendulum is $2\,s$ .

Using the formula of the time period ,
$T = 2\pi \sqrt {\dfrac{l}{g}} $
Substituting the values of the time period of the pendulum as $2\,s$ and the acceleration due to gravity as the $9.8\,m{s^{ - 2}}$ in the above formula.
$2 = 2\pi \sqrt {\dfrac{l}{{9.8}}} $
By grouping the known parameters in one side and the unknown parameter in the other side.
$\sqrt l = \dfrac{{2 \times \sqrt {9.8} }}{{2\pi }}$
By taking a square on both sides of the equation, to find the value of the length of the pendulum.
$l = \dfrac{{4 \times 9.8}}{{4{\pi ^2}}}$
By the simplification of the above step,
$l = \dfrac{{9.8}}{{{\pi ^2}}}$
It is known that the value of the $\pi = 3.14$ in the above step,
$l = \dfrac{{9.8}}{{{{3.14}^2}}}$
By the further simplification,
$l = 0.994\,m$
All the options given in the question contain the units in the centimeter. But the obtained answer is in meters. So the obtained answer is converted into the centimeter unit.
$l = 99.4\,cm$
Thus the option (C) is correct.
Note: When the pendulum swings from one side to the other side, it takes two seconds to reach the other side. Since the pendulum takes the same time, but the maximum distance is covered at the high speed and the minimum distance is covered at the low speed.
Formula used:
The time period is given by
$T = 2\pi \sqrt {\dfrac{l}{g}} $
Where $T$ is the time period of the pendulum, $l$ is the length of the pendulum and $g$ is the acceleration due to gravity.
Complete step by step solution:
It is known that the time period of the second pendulum is $2\,s$ .

Using the formula of the time period ,
$T = 2\pi \sqrt {\dfrac{l}{g}} $
Substituting the values of the time period of the pendulum as $2\,s$ and the acceleration due to gravity as the $9.8\,m{s^{ - 2}}$ in the above formula.
$2 = 2\pi \sqrt {\dfrac{l}{{9.8}}} $
By grouping the known parameters in one side and the unknown parameter in the other side.
$\sqrt l = \dfrac{{2 \times \sqrt {9.8} }}{{2\pi }}$
By taking a square on both sides of the equation, to find the value of the length of the pendulum.
$l = \dfrac{{4 \times 9.8}}{{4{\pi ^2}}}$
By the simplification of the above step,
$l = \dfrac{{9.8}}{{{\pi ^2}}}$
It is known that the value of the $\pi = 3.14$ in the above step,
$l = \dfrac{{9.8}}{{{{3.14}^2}}}$
By the further simplification,
$l = 0.994\,m$
All the options given in the question contain the units in the centimeter. But the obtained answer is in meters. So the obtained answer is converted into the centimeter unit.
$l = 99.4\,cm$
Thus the option (C) is correct.
Note: When the pendulum swings from one side to the other side, it takes two seconds to reach the other side. Since the pendulum takes the same time, but the maximum distance is covered at the high speed and the minimum distance is covered at the low speed.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding Uniform Acceleration in Physics

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Laws of Motion Class 11 Physics Chapter 4 CBSE Notes - 2025-26

Waves Class 11 Physics Chapter 14 CBSE Notes - 2025-26

Mechanical Properties of Fluids Class 11 Physics Chapter 9 CBSE Notes - 2025-26

Thermodynamics Class 11 Physics Chapter 11 CBSE Notes - 2025-26

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

