
The length of second pendulum is:
A) $100\,cm$
B) $99\,cm$
C) $99.4\,cm$
D) $98\,cm$
Answer
232.8k+ views
Hint: Use the formula of the time period of the pendulum and substitute the value of the length of the pendulum as $2\,s$ and the acceleration due to gravity as $9.8$. The obtained equation is simplified, to obtain the value of the length of the pendulum.
Formula used:
The time period is given by
$T = 2\pi \sqrt {\dfrac{l}{g}} $
Where $T$ is the time period of the pendulum, $l$ is the length of the pendulum and $g$ is the acceleration due to gravity.
Complete step by step solution:
It is known that the time period of the second pendulum is $2\,s$ .

Using the formula of the time period ,
$T = 2\pi \sqrt {\dfrac{l}{g}} $
Substituting the values of the time period of the pendulum as $2\,s$ and the acceleration due to gravity as the $9.8\,m{s^{ - 2}}$ in the above formula.
$2 = 2\pi \sqrt {\dfrac{l}{{9.8}}} $
By grouping the known parameters in one side and the unknown parameter in the other side.
$\sqrt l = \dfrac{{2 \times \sqrt {9.8} }}{{2\pi }}$
By taking a square on both sides of the equation, to find the value of the length of the pendulum.
$l = \dfrac{{4 \times 9.8}}{{4{\pi ^2}}}$
By the simplification of the above step,
$l = \dfrac{{9.8}}{{{\pi ^2}}}$
It is known that the value of the $\pi = 3.14$ in the above step,
$l = \dfrac{{9.8}}{{{{3.14}^2}}}$
By the further simplification,
$l = 0.994\,m$
All the options given in the question contain the units in the centimeter. But the obtained answer is in meters. So the obtained answer is converted into the centimeter unit.
$l = 99.4\,cm$
Thus the option (C) is correct.
Note: When the pendulum swings from one side to the other side, it takes two seconds to reach the other side. Since the pendulum takes the same time, but the maximum distance is covered at the high speed and the minimum distance is covered at the low speed.
Formula used:
The time period is given by
$T = 2\pi \sqrt {\dfrac{l}{g}} $
Where $T$ is the time period of the pendulum, $l$ is the length of the pendulum and $g$ is the acceleration due to gravity.
Complete step by step solution:
It is known that the time period of the second pendulum is $2\,s$ .

Using the formula of the time period ,
$T = 2\pi \sqrt {\dfrac{l}{g}} $
Substituting the values of the time period of the pendulum as $2\,s$ and the acceleration due to gravity as the $9.8\,m{s^{ - 2}}$ in the above formula.
$2 = 2\pi \sqrt {\dfrac{l}{{9.8}}} $
By grouping the known parameters in one side and the unknown parameter in the other side.
$\sqrt l = \dfrac{{2 \times \sqrt {9.8} }}{{2\pi }}$
By taking a square on both sides of the equation, to find the value of the length of the pendulum.
$l = \dfrac{{4 \times 9.8}}{{4{\pi ^2}}}$
By the simplification of the above step,
$l = \dfrac{{9.8}}{{{\pi ^2}}}$
It is known that the value of the $\pi = 3.14$ in the above step,
$l = \dfrac{{9.8}}{{{{3.14}^2}}}$
By the further simplification,
$l = 0.994\,m$
All the options given in the question contain the units in the centimeter. But the obtained answer is in meters. So the obtained answer is converted into the centimeter unit.
$l = 99.4\,cm$
Thus the option (C) is correct.
Note: When the pendulum swings from one side to the other side, it takes two seconds to reach the other side. Since the pendulum takes the same time, but the maximum distance is covered at the high speed and the minimum distance is covered at the low speed.
Recently Updated Pages
Dimensions of Charge: Dimensional Formula, Derivation, SI Units & Examples

How to Calculate Moment of Inertia: Step-by-Step Guide & Formulas

Circuit Switching vs Packet Switching: Key Differences Explained

Dimensions of Pressure in Physics: Formula, Derivation & SI Unit

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Laws of Motion Class 11 Physics Chapter 4 CBSE Notes - 2025-26

Waves Class 11 Physics Chapter 14 CBSE Notes - 2025-26

Mechanical Properties of Fluids Class 11 Physics Chapter 9 CBSE Notes - 2025-26

Thermodynamics Class 11 Physics Chapter 11 CBSE Notes - 2025-26

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

