The locus of the middle points of the chords of the parabola \[{{y}^{2}}=4ax\] which passes
through the origin is
(a) \[{{y}^{2}}=ax\]
(b) \[{{y}^{2}}=2ax\]
(c) \[{{y}^{2}}=4ax\]
(d) \[{{x}^{2}}=4ay\]
Answer
Verified
123k+ views
Hint: Consider any two points on parabola with parameter \[t\] and write the equation of chord joining them. Pass the equation through origin and solve them to find the locus of the point joining middle points of chord.
We have the parabola \[{{y}^{2}}=4ax\]. To find the locus of middle point of the chords
joining two points on the parabola, we will assume two points on the parabola of the
form \[P({{t}_{1}})=\left( at_{1}^{2},2a{{t}_{1}} \right)\]and \[Q({{t}_{2}})=\left( at_{2}^{2},2a{{t}_{2}}
\right)\].
We know that the equation of chords joining two points \[P({{t}_{1}})\]and\[Q({{t}_{2}})\] on the
parabola is \[y\left( {{t}_{1}}+{{t}_{2}} \right)=2x+2a{{t}_{1}}{{t}_{2}}\].
We know that this chord passes through the origin. So, we will substitute the point\[\left( 0,0
\right)\]in the equation of the chord.
Substituting the point\[\left( 0,0 \right)\]in the equation of chord, we get\[0\left( {{t}_{1}}+{{t}_{2}}
\right)=2\times 0+2a{{t}_{1}}{{t}_{2}}\].
Hence, let’s assume\[{{t}_{2}}=0\].
We observe that any chord of the parabola which is passing through origin has origin as one of its
end points.
We can assume other end of the chord to be \[P({{t}_{1}})=\left( at_{1}^{2},2a{{t}_{1}} \right)\].
To find the middle point of two points of the form \[\left( {{x}_{1}},{{y}_{1}} \right)\]and\[\left(
{{x}_{2}},{{y}_{2}} \right)\], use the formula \[\left(
\dfrac{{{x}_{1}}+{{x}_{2}}}{2},\dfrac{{{y}_{1}}+{{y}_{2}}}{2} \right)\].
Substituting\[{{x}_{1}}=0,{{y}_{1}}=0,{{x}_{2}}=at_{1}^{2},{{y}_{2}}=2a{{t}_{1}}\]in the above formula,
we get the middle point of \[\left( 0,0 \right)\]and\[P({{t}_{1}})=\left( at_{1}^{2},2a{{t}_{1}}
\right)\]as\[\left( \dfrac{0+at_{1}^{2}}{2},\dfrac{0+2a{{t}_{1}}}{2} \right)\].
Thus, the middle point of chords has the form \[\left( \dfrac{at_{1}^{2}}{2},a{{t}_{1}} \right)\].
To find the locus of middle point of the chords, let’s assume \[x=\dfrac{at_{1}^{2}}{2},y=a{{t}_{1}}\].
Eliminating \[{{t}_{1}}\]from both equations by rearranging the terms, we
get \[\dfrac{2x}{a}=t_{1}^{2},\dfrac{y}{a}={{t}_{1}}\].
Substituting the value of \[{{t}_{1}}\]from both equations, we get \[\dfrac{2x}{a}={{\left( \dfrac{y}{a}
\right)}^{2}}\].
Rearranging the terms, we get \[{{y}^{2}}=2ax\].
Hence, the correct answer is \[{{y}^{2}}=2ax\].
Note: It’s very necessary to use the fact that any chord of the parabola passing through origin has
origin as one of its end points. We also verified this fact by assuming any two points on the parabola
and making the equation of chord pass through origin.
We have the parabola \[{{y}^{2}}=4ax\]. To find the locus of middle point of the chords
joining two points on the parabola, we will assume two points on the parabola of the
form \[P({{t}_{1}})=\left( at_{1}^{2},2a{{t}_{1}} \right)\]and \[Q({{t}_{2}})=\left( at_{2}^{2},2a{{t}_{2}}
\right)\].
We know that the equation of chords joining two points \[P({{t}_{1}})\]and\[Q({{t}_{2}})\] on the
parabola is \[y\left( {{t}_{1}}+{{t}_{2}} \right)=2x+2a{{t}_{1}}{{t}_{2}}\].
We know that this chord passes through the origin. So, we will substitute the point\[\left( 0,0
\right)\]in the equation of the chord.
Substituting the point\[\left( 0,0 \right)\]in the equation of chord, we get\[0\left( {{t}_{1}}+{{t}_{2}}
\right)=2\times 0+2a{{t}_{1}}{{t}_{2}}\].
Hence, let’s assume\[{{t}_{2}}=0\].
We observe that any chord of the parabola which is passing through origin has origin as one of its
end points.
We can assume other end of the chord to be \[P({{t}_{1}})=\left( at_{1}^{2},2a{{t}_{1}} \right)\].
To find the middle point of two points of the form \[\left( {{x}_{1}},{{y}_{1}} \right)\]and\[\left(
{{x}_{2}},{{y}_{2}} \right)\], use the formula \[\left(
\dfrac{{{x}_{1}}+{{x}_{2}}}{2},\dfrac{{{y}_{1}}+{{y}_{2}}}{2} \right)\].
Substituting\[{{x}_{1}}=0,{{y}_{1}}=0,{{x}_{2}}=at_{1}^{2},{{y}_{2}}=2a{{t}_{1}}\]in the above formula,
we get the middle point of \[\left( 0,0 \right)\]and\[P({{t}_{1}})=\left( at_{1}^{2},2a{{t}_{1}}
\right)\]as\[\left( \dfrac{0+at_{1}^{2}}{2},\dfrac{0+2a{{t}_{1}}}{2} \right)\].
Thus, the middle point of chords has the form \[\left( \dfrac{at_{1}^{2}}{2},a{{t}_{1}} \right)\].
To find the locus of middle point of the chords, let’s assume \[x=\dfrac{at_{1}^{2}}{2},y=a{{t}_{1}}\].
Eliminating \[{{t}_{1}}\]from both equations by rearranging the terms, we
get \[\dfrac{2x}{a}=t_{1}^{2},\dfrac{y}{a}={{t}_{1}}\].
Substituting the value of \[{{t}_{1}}\]from both equations, we get \[\dfrac{2x}{a}={{\left( \dfrac{y}{a}
\right)}^{2}}\].
Rearranging the terms, we get \[{{y}^{2}}=2ax\].
Hence, the correct answer is \[{{y}^{2}}=2ax\].
Note: It’s very necessary to use the fact that any chord of the parabola passing through origin has
origin as one of its end points. We also verified this fact by assuming any two points on the parabola
and making the equation of chord pass through origin.
Recently Updated Pages
The real roots of the equation x23 + x13 2 0 are A class 11 maths JEE_Main
Find the reminder when 798 is divided by 5 class 11 maths JEE_Main
Let A and B be two sets containing 2 elements and 4 class 11 maths JEE_Main
A ray of light moving parallel to the xaxis gets reflected class 11 maths JEE_Main
A man on the top of a vertical observation tower o-class-11-maths-JEE_Main
If there are 25 railway stations on a railway line class 11 maths JEE_Main
Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility & More
JEE Main Login 2045: Step-by-Step Instructions and Details
JEE Main Chemistry Question Paper with Answer Keys and Solutions
JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking
JEE Main 2023 January 24 Shift 2 Question Paper with Answer Keys & Solutions
JEE Main Chemistry Exam Pattern 2025
Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs
NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines
NCERT Solutions for Class 11 Maths Chapter 12 Limits and Derivatives
NCERT Solutions for Class 11 Maths Chapter 8 Sequences and Series
NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections
NCERT Solutions for Class 11 Maths Chapter 13 Statistics