
The magnetic field due to a current carrying circular loop of radius $3m$ at a point on the axis at a distance of $4m$ from the centre is $54\mu T$ .What will be its value at the centre of the loop?
A. $250\mu T$
B. $150\mu T$
C. $125\mu T$
D. $75\mu T$
Answer
134.1k+ views
Hint: Relate the given value of magnetic field at the centre of the loop with the formulae for both the cases.
The magnetic field on the axis of a current carrying loop is given by ${B_z} = \dfrac{{{\mu _0}}}{{4\pi }}\dfrac{{2\pi {R^2}I}}{{{{\left( {{z^2} + {R^2}} \right)}^{3/2}}}}$ where $z$ is the distance of that point on the axis from centre of the loop, $R$ is the radius of the loop and $I$ is the current flowing in the loop. For the magnetic field at the centre of the loop, put $z = 0$ in the above expression.
Complete step by step answer:
In the question we are supposed to deal with the magnetic field due to the same circular loop at two different points on the axis and at the centre. Magnetic field on the axis is given ${B_z} = 54\mu T$ .
So we can relate the given value of the magnetic field at the centre of the loop with the formulae for both the cases.
We know that the magnetic field on the axis of a current carrying loop is given by ${B_z} = \dfrac{{{\mu _0}}}{{4\pi }}\dfrac{{2\pi {R^2}I}}{{{{\left( {{z^2} + {R^2}} \right)}^{3/2}}}}$ where $z$ is the distance of that point on the axis from centre of the loop, $R$ is the radius of the loop and $I$ is the current flowing in the loop.
So, let us suppose that current $I$ is flowing in the loop.
Now, for magnetic field at the centre of the loop, we can put $z = 0$ in the above expression which gives
$\implies$ ${B_c} = \dfrac{{{\mu _0}}}{{4\pi }}\dfrac{{2\pi I}}{R}$
On dividing both the equation we have
$\implies$ $\dfrac{{{B_c}}}{{{B_z}}} = \dfrac{{{{\left( {{z^2} + {R^2}} \right)}^{3/2}}}}{{{R^3}}}$
Therefore, substituting the values given in the question we have
$\implies$ $\dfrac{{{B_c}}}{{{B_z}}} = \dfrac{{{{\left( {{4^2} + {3^2}} \right)}^{3/2}}}}{{{3^3}}} = \dfrac{{125}}{{27}}$
So, we get the magnetic field at the centre as
$\implies$ ${B_c} = \dfrac{{125}}{{27}} \times {B_z} = \dfrac{{125}}{{27}} \times 54 = 250\mu T$
Hence, option A is correct.
Note: The two formulae which are used here can be derived using Biot-Savart’s Law. The direction of the magnetic field due to the loop can be determined using the right hand thumb rule which states that when we roll our fingers according to the direction of current flowing then the direction of thumb gives us the direction of the magnetic field due to the loop.
The magnetic field on the axis of a current carrying loop is given by ${B_z} = \dfrac{{{\mu _0}}}{{4\pi }}\dfrac{{2\pi {R^2}I}}{{{{\left( {{z^2} + {R^2}} \right)}^{3/2}}}}$ where $z$ is the distance of that point on the axis from centre of the loop, $R$ is the radius of the loop and $I$ is the current flowing in the loop. For the magnetic field at the centre of the loop, put $z = 0$ in the above expression.
Complete step by step answer:
In the question we are supposed to deal with the magnetic field due to the same circular loop at two different points on the axis and at the centre. Magnetic field on the axis is given ${B_z} = 54\mu T$ .
So we can relate the given value of the magnetic field at the centre of the loop with the formulae for both the cases.
We know that the magnetic field on the axis of a current carrying loop is given by ${B_z} = \dfrac{{{\mu _0}}}{{4\pi }}\dfrac{{2\pi {R^2}I}}{{{{\left( {{z^2} + {R^2}} \right)}^{3/2}}}}$ where $z$ is the distance of that point on the axis from centre of the loop, $R$ is the radius of the loop and $I$ is the current flowing in the loop.
So, let us suppose that current $I$ is flowing in the loop.
Now, for magnetic field at the centre of the loop, we can put $z = 0$ in the above expression which gives
$\implies$ ${B_c} = \dfrac{{{\mu _0}}}{{4\pi }}\dfrac{{2\pi I}}{R}$
On dividing both the equation we have
$\implies$ $\dfrac{{{B_c}}}{{{B_z}}} = \dfrac{{{{\left( {{z^2} + {R^2}} \right)}^{3/2}}}}{{{R^3}}}$
Therefore, substituting the values given in the question we have
$\implies$ $\dfrac{{{B_c}}}{{{B_z}}} = \dfrac{{{{\left( {{4^2} + {3^2}} \right)}^{3/2}}}}{{{3^3}}} = \dfrac{{125}}{{27}}$
So, we get the magnetic field at the centre as
$\implies$ ${B_c} = \dfrac{{125}}{{27}} \times {B_z} = \dfrac{{125}}{{27}} \times 54 = 250\mu T$
Hence, option A is correct.
Note: The two formulae which are used here can be derived using Biot-Savart’s Law. The direction of the magnetic field due to the loop can be determined using the right hand thumb rule which states that when we roll our fingers according to the direction of current flowing then the direction of thumb gives us the direction of the magnetic field due to the loop.
Recently Updated Pages
JEE Main 2025 Session 2 Form Correction (Closed) – What Can Be Edited

What are examples of Chemical Properties class 10 chemistry JEE_Main

JEE Main 2025 Session 2 Schedule Released – Check Important Details Here!

JEE Main 2025 Session 2 Admit Card – Release Date & Direct Download Link

JEE Main 2025 Session 2 Registration (Closed) - Link, Last Date & Fees

JEE Mains Result 2025 NTA NIC – Check Your Score Now!

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Wheatstone Bridge for JEE Main Physics 2025

Electric field due to uniformly charged sphere class 12 physics JEE_Main

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Diffraction of Light - Young’s Single Slit Experiment

Dual Nature of Radiation and Matter Class 12 Notes: CBSE Physics Chapter 11

Formula for number of images formed by two plane mirrors class 12 physics JEE_Main

JEE Advanced 2024 Syllabus Weightage

JEE Main Chemistry Question Paper with Answer Keys and Solutions
