The number of numbers divisible by 3 that can be formed by four different even digits is
(a) 18
(b) 36
(c) 0
(d) None of these
Answer
Verified
122.7k+ views
Hint: For finding the number of numbers divisible by 3 we use the permutation concept. First, we must know the divisibility rule of 3 which states that a number is divisible by 3 only when the sum of individual digits is divisible by 3. By using this we can easily solve our problem.
Complete step-by-step answer:
According to our problem, even digits can be stated as 0, 2, 4, 6, 8.
As the divisibility rule of 3 states that a number is divisible by 3 only when the sum of individual digits is divisible by 3. So, the 4 different even digit numbers are divisible by 3 = set of (2, 4, 6, 0) and (8, 6, 4, 0).
So, the number of combinations possible = $4!$.
But, if 0 occurs at first place then the number is not four digits. So, cases for 0 at first place = $3!$.
So, total valid combinations = $4!-3!=18$.
But there are two possible sets, so multiplying the obtained result by 2 we get total valid combinations as = $18\times 2=36$.
Therefore, option (b) is correct.
Note: The key concept of solving this problem is the knowledge of permutations and divisibility rule for 3. Once the total number of cases are obtained by using the given criteria, then by using permutation the final result can be evaluated without any error.
Complete step-by-step answer:
According to our problem, even digits can be stated as 0, 2, 4, 6, 8.
As the divisibility rule of 3 states that a number is divisible by 3 only when the sum of individual digits is divisible by 3. So, the 4 different even digit numbers are divisible by 3 = set of (2, 4, 6, 0) and (8, 6, 4, 0).
So, the number of combinations possible = $4!$.
But, if 0 occurs at first place then the number is not four digits. So, cases for 0 at first place = $3!$.
So, total valid combinations = $4!-3!=18$.
But there are two possible sets, so multiplying the obtained result by 2 we get total valid combinations as = $18\times 2=36$.
Therefore, option (b) is correct.
Note: The key concept of solving this problem is the knowledge of permutations and divisibility rule for 3. Once the total number of cases are obtained by using the given criteria, then by using permutation the final result can be evaluated without any error.
Recently Updated Pages
The real roots of the equation x23 + x13 2 0 are A class 11 maths JEE_Main
Find the reminder when 798 is divided by 5 class 11 maths JEE_Main
Let A and B be two sets containing 2 elements and 4 class 11 maths JEE_Main
A ray of light moving parallel to the xaxis gets reflected class 11 maths JEE_Main
A man on the top of a vertical observation tower o-class-11-maths-JEE_Main
If there are 25 railway stations on a railway line class 11 maths JEE_Main
Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility & More
JEE Main Login 2045: Step-by-Step Instructions and Details
JEE Main Chemistry Question Paper with Answer Keys and Solutions
JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking
JEE Main 2023 January 24 Shift 2 Question Paper with Answer Keys & Solutions
JEE Main Chemistry Exam Pattern 2025
Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs
NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines
NCERT Solutions for Class 11 Maths Chapter 12 Limits and Derivatives
NCERT Solutions for Class 11 Maths Chapter 8 Sequences and Series
NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections
NCERT Solutions for Class 11 Maths Chapter 13 Statistics