
The number of potassium atoms present in 117 g of potassium sample (Molecular Weight = 39 g/mole) are:
A. \[39 \times 6.023 \times {10^{23}}\]atoms
B. \[117 \times 6.023 \times{10^{23}}\]atoms
C. \[4 \times 6.023 \times {10^{23}}\]atoms
D. \[3 \times 6.023 \times {10^{23}}\]atoms
Answer
133.5k+ views
Hint: The molecular weight of potassium is 39 g/mole . This means the weight of 1 mole potassium which contains \[6.023{\text{ }} \times {\text{ }}{10^{23}}\] number of atoms is 39 g. To calculate the number of potassium in 117 grams of potassium, you should know the mole concept.
Formula used: \[{\text{1 mole = atomic weight = 6}}{{.023 \times 1}}{{\text{0}}^{{\text{23}}}}{\text{no}}{\text{.of atoms}}\]
Step by step solution:
Now at first, according to the mole concept we know 1 mole of any substance is equal to its molecular weight. And 1 mole is also equal to the Avogadro’s number of atoms i.e.\[{\text{6}}{\text{.023}} \times {\text{1}}{{\text{0}}^{23}}\].
Therefore,\[{\text{1 mole = atomic weight = 6}}{{.023 \times 1}}{{\text{0}}^{{\text{23}}}}{\text{no}}{\text{.of atoms}}\]
According to this it can be said that 39 gm potassium contains \[{\text{6}}{{.023}} \times {\text{1}}{{\text{0}}^{23}}\] number of atoms.
39 gm potassium contains \[{\text{6}}{{.023}} \times {\text{1}}{{\text{0}}^{23}}\] number of atoms.
Now, 1 gram potassium contains \[\dfrac{{{\text{6}}{{.023 \times 1}}{{\text{0}}^{{\text{23}}}}}}{{{\text{39}}}}\] number of atoms
So, 117 grams potassium contains \[\dfrac{{{\text{6}}{{.023 \times 1}}{{\text{0}}^{{{23}}}} \times 117}}{{{\text{39}}}}\] number of atoms.
Therefore, 117 grams potassium contains \[{{3}} \times {\text{6}}{{.023 \times 1}}{{\text{0}}^{{\text{23}}}}\] number of atoms.
So, the correct option is D.
Note: The formula of equivalent weight is,
\[{\text{Equivalent weight = }}\dfrac{{{\text{Molecular weight}}}}{{{\text{number of equivalent moles}}}}\].
For acids the number of equivalents is equal to the number of H+ present in one molecule. And for bases the number of HO- groups present in one molecule. The equivalent weight of any substance cannot be greater than its molecular weight. Either the value of equivalent weight is equal or less than the molecular weight of that substance.
Formula used: \[{\text{1 mole = atomic weight = 6}}{{.023 \times 1}}{{\text{0}}^{{\text{23}}}}{\text{no}}{\text{.of atoms}}\]
Step by step solution:
Now at first, according to the mole concept we know 1 mole of any substance is equal to its molecular weight. And 1 mole is also equal to the Avogadro’s number of atoms i.e.\[{\text{6}}{\text{.023}} \times {\text{1}}{{\text{0}}^{23}}\].
Therefore,\[{\text{1 mole = atomic weight = 6}}{{.023 \times 1}}{{\text{0}}^{{\text{23}}}}{\text{no}}{\text{.of atoms}}\]
According to this it can be said that 39 gm potassium contains \[{\text{6}}{{.023}} \times {\text{1}}{{\text{0}}^{23}}\] number of atoms.
39 gm potassium contains \[{\text{6}}{{.023}} \times {\text{1}}{{\text{0}}^{23}}\] number of atoms.
Now, 1 gram potassium contains \[\dfrac{{{\text{6}}{{.023 \times 1}}{{\text{0}}^{{\text{23}}}}}}{{{\text{39}}}}\] number of atoms
So, 117 grams potassium contains \[\dfrac{{{\text{6}}{{.023 \times 1}}{{\text{0}}^{{{23}}}} \times 117}}{{{\text{39}}}}\] number of atoms.
Therefore, 117 grams potassium contains \[{{3}} \times {\text{6}}{{.023 \times 1}}{{\text{0}}^{{\text{23}}}}\] number of atoms.
So, the correct option is D.
Note: The formula of equivalent weight is,
\[{\text{Equivalent weight = }}\dfrac{{{\text{Molecular weight}}}}{{{\text{number of equivalent moles}}}}\].
For acids the number of equivalents is equal to the number of H+ present in one molecule. And for bases the number of HO- groups present in one molecule. The equivalent weight of any substance cannot be greater than its molecular weight. Either the value of equivalent weight is equal or less than the molecular weight of that substance.
Recently Updated Pages
JEE Main 2025 Session 2 Form Correction (Closed) – What Can Be Edited

Sign up for JEE Main 2025 Live Classes - Vedantu

JEE Main Books 2023-24: Best JEE Main Books for Physics, Chemistry and Maths

JEE Main 2023 April 13 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 11 Shift 2 Question Paper with Answer Key

JEE Main 2023 April 10 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Current Loop as Magnetic Dipole and Its Derivation for JEE

Inertial and Non-Inertial Frame of Reference - JEE Important Topic

Other Pages
NCERT Solutions for Class 11 Chemistry Chapter 9 Hydrocarbons

JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Chemistry Chapter 5 Thermodynamics

Hydrocarbons Class 11 Notes: CBSE Chemistry Chapter 9

NCERT Solutions for Class 11 Chemistry Chapter 7 Redox Reaction

Thermodynamics Class 11 Notes: CBSE Chapter 5
