Answer
Verified
110.4k+ views
Hint: In this solution, we will use the formula of gravitational acceleration on a planet. We will find the gravitational acceleration on the surface of Earth and Mass and take their ratio to determine the acceleration due to gravity on the surface of Mars.
Formula used: In this solution, we will use the following formulae:
Gravitational acceleration on any planet: $g = \dfrac{{GM}}{{{R^2}}}$ where $G$ is the gravitational constant, $M$ is the mass of the planet, and $R$is the radius of the planet.
Complete step by step answer:
We’ve been given that the radius of the Earth is 6370 km and the radius of mars is 3440 km and the mass of Mars is $1.1$ times the mass of Earth.
Let us denote the mass and radius of Earth as ${M_e}\,{\text{and}}\,{{\text{R}}_e}$ and the mass and radius of Mars as ${M_m}\,{\text{and}}\,{{\text{R}}_m}$.
Then the gravitational acceleration on the surface of Earth will be
${g_e} = \dfrac{{G{M_e}}}{{{{\left( {6370} \right)}^2}}}$
And the gravitational acceleration on the surface of Mars will be
${g_m} = \dfrac{{G{M_m}}}{{{{\left( {3440} \right)}^2}}}$
Taking the ratio of the two gravitational acceleration, we get
$\dfrac{{{g_e}}}{{{g_m}}} = \dfrac{{{M_e}}}{{{M_m}}} \times {\left( {\dfrac{{3440}}{{6370}}} \right)^2}$
Now we’ve been given that the mass of Mars is $1.1$ times the mass of Earth so we can write that mathematically as ${M_m} = 1.1{M_e}$. So, the above equation will be transformed as
$\dfrac{{{g_e}}}{{{g_m}}} = \dfrac{1}{{1.1}} \times {\left( {\dfrac{{3440}}{{6370}}} \right)^2}$
Which gives us
$\dfrac{{{g_e}}}{{{g_m}}} = 0.265$
Now we know that the gravitational acceleration on the surface of Earth is ${g_e} = 9.81\,m/{s^2}$ so we can find the gravitational acceleration on the surface of Mars as
${g_m} = \dfrac{{9.81}}{{0.265}} = 37\,m/{s^2}$
Note: The dimensions of Mars are different in reality than what is actually mentioned in the question. But this question tests the concepts of gravitational acceleration and its dependence on the mass and radius of a planet.
Formula used: In this solution, we will use the following formulae:
Gravitational acceleration on any planet: $g = \dfrac{{GM}}{{{R^2}}}$ where $G$ is the gravitational constant, $M$ is the mass of the planet, and $R$is the radius of the planet.
Complete step by step answer:
We’ve been given that the radius of the Earth is 6370 km and the radius of mars is 3440 km and the mass of Mars is $1.1$ times the mass of Earth.
Let us denote the mass and radius of Earth as ${M_e}\,{\text{and}}\,{{\text{R}}_e}$ and the mass and radius of Mars as ${M_m}\,{\text{and}}\,{{\text{R}}_m}$.
Then the gravitational acceleration on the surface of Earth will be
${g_e} = \dfrac{{G{M_e}}}{{{{\left( {6370} \right)}^2}}}$
And the gravitational acceleration on the surface of Mars will be
${g_m} = \dfrac{{G{M_m}}}{{{{\left( {3440} \right)}^2}}}$
Taking the ratio of the two gravitational acceleration, we get
$\dfrac{{{g_e}}}{{{g_m}}} = \dfrac{{{M_e}}}{{{M_m}}} \times {\left( {\dfrac{{3440}}{{6370}}} \right)^2}$
Now we’ve been given that the mass of Mars is $1.1$ times the mass of Earth so we can write that mathematically as ${M_m} = 1.1{M_e}$. So, the above equation will be transformed as
$\dfrac{{{g_e}}}{{{g_m}}} = \dfrac{1}{{1.1}} \times {\left( {\dfrac{{3440}}{{6370}}} \right)^2}$
Which gives us
$\dfrac{{{g_e}}}{{{g_m}}} = 0.265$
Now we know that the gravitational acceleration on the surface of Earth is ${g_e} = 9.81\,m/{s^2}$ so we can find the gravitational acceleration on the surface of Mars as
${g_m} = \dfrac{{9.81}}{{0.265}} = 37\,m/{s^2}$
Note: The dimensions of Mars are different in reality than what is actually mentioned in the question. But this question tests the concepts of gravitational acceleration and its dependence on the mass and radius of a planet.
Recently Updated Pages
Write an article on the need and importance of sports class 10 english JEE_Main
Write a composition in approximately 450 500 words class 10 english JEE_Main
Arrange the sentences P Q R between S1 and S5 such class 10 english JEE_Main
If x2 hx 21 0x2 3hx + 35 0h 0 has a common root then class 10 maths JEE_Main
The radius of a sector is 12 cm and the angle is 120circ class 10 maths JEE_Main
For what value of x function fleft x right x4 4x3 + class 10 maths JEE_Main
Other Pages
If a wire of resistance R is stretched to double of class 12 physics JEE_Main
The energy stored is a condenser is in the form of class 12 physics JEE_Main
Excluding stoppages the speed of a bus is 54 kmph and class 11 maths JEE_Main
Electric field due to uniformly charged sphere class 12 physics JEE_Main
In Searles apparatus when the experimental wire is class 11 physics JEE_Main