Answer
Verified
99.9k+ views
Hint: For finding the dimensional formula of any quantity first of all write the formula related to that quantity. Here the solar constant is defined as the energy incident per unit area per second. Write the dimensional formula of the power and the dimensional formula of area and then simplify to get the dimensional formula of solar constant.
Complete solution:
Solar constant is defined as the total radiation energy received from the Sun per unit of time per unit of area.
Units of solar constant ${\text{ = }}\dfrac{{{\text{power}}}}{{{\text{area}}}}$
The S.I. unit of power is watt (represented by W)
S.I. unit of area is metre square (represented by ${{\text{m}}^{\text{2}}}$)
Thus, the S.I. units of solar constant ${\text{ = }}\dfrac{{\text{W}}}{{{{\text{m}}^{\text{2}}}}}$
A body is said to have power of ${\text{1 Watt}}$ if the body does work of ${\text{1 Joule}}$ in ${\text{1 second}}$.
So, ${\text{1 Watt = }}\dfrac{{{\text{1 joule}}}}{{{\text{1 sec}}}}$
Also, One joule of work is done on an object when a force of one newton (represented by ${\text{1 N}}$) is applied over a distance of one meter (represented by ${\text{1 m}}$).
So, ${\text{1 joule = }}\dfrac{{{\text{1 newton}}}}{{{\text{1 metre}}}}$
Thus, the S.I. units of solar constant is $\dfrac{{{\text{N m}}}}{{{\text{s }}{{\text{m}}^2}}}$.
Now the dimensional formula of force whose S.I. unit is newton is given by ${\text{[ML}}{{\text{T}}^{{\text{ - 2}}}}{\text{]}}$
Dimensional formula of distance whose S.I. unit is metre is given by ${\text{[}}{{\text{M}}^{\text{0}}}{{\text{L}}^{\text{1}}}{{\text{T}}^{\text{0}}}{\text{]}}$
Dimensional formula of time whose S.I. units is second is given by ${\text{[ML}}{{\text{T}}^1}{\text{]}}$
Thus, dimensional formula of solar constant is $\dfrac{{{\text{[}}{{\text{M}}^1}{{\text{L}}^1}{{\text{T}}^{{\text{ - 2}}}}{\text{][L]}}}}{{{\text{[}}{{\text{T}}^1}{\text{][}}{{\text{L}}^{\text{2}}}{\text{]}}}}{\text{ = [}}{{\text{M}}^1}{{\text{L}}^0}{{\text{T}}^{{\text{ - 3}}}}{\text{]}}$
The dimensional formula for solar constant is ${\text{[}}{{\text{M}}^1}{{\text{L}}^0}{{\text{T}}^{{\text{ - 3}}}}{\text{]}}$
Therefore, option (C) is the correct choice.
Note: Dimensions are denoted with square brackets. The dimensional formula of length, mass, time, electric current, thermodynamic temperature, luminous intensity and amount of substance are [L], [M], [A], [K], [Cd] and [mol] respectively. These are the quantities from which all other secondary quantities can be obtained.
Complete solution:
Solar constant is defined as the total radiation energy received from the Sun per unit of time per unit of area.
Units of solar constant ${\text{ = }}\dfrac{{{\text{power}}}}{{{\text{area}}}}$
The S.I. unit of power is watt (represented by W)
S.I. unit of area is metre square (represented by ${{\text{m}}^{\text{2}}}$)
Thus, the S.I. units of solar constant ${\text{ = }}\dfrac{{\text{W}}}{{{{\text{m}}^{\text{2}}}}}$
A body is said to have power of ${\text{1 Watt}}$ if the body does work of ${\text{1 Joule}}$ in ${\text{1 second}}$.
So, ${\text{1 Watt = }}\dfrac{{{\text{1 joule}}}}{{{\text{1 sec}}}}$
Also, One joule of work is done on an object when a force of one newton (represented by ${\text{1 N}}$) is applied over a distance of one meter (represented by ${\text{1 m}}$).
So, ${\text{1 joule = }}\dfrac{{{\text{1 newton}}}}{{{\text{1 metre}}}}$
Thus, the S.I. units of solar constant is $\dfrac{{{\text{N m}}}}{{{\text{s }}{{\text{m}}^2}}}$.
Now the dimensional formula of force whose S.I. unit is newton is given by ${\text{[ML}}{{\text{T}}^{{\text{ - 2}}}}{\text{]}}$
Dimensional formula of distance whose S.I. unit is metre is given by ${\text{[}}{{\text{M}}^{\text{0}}}{{\text{L}}^{\text{1}}}{{\text{T}}^{\text{0}}}{\text{]}}$
Dimensional formula of time whose S.I. units is second is given by ${\text{[ML}}{{\text{T}}^1}{\text{]}}$
Thus, dimensional formula of solar constant is $\dfrac{{{\text{[}}{{\text{M}}^1}{{\text{L}}^1}{{\text{T}}^{{\text{ - 2}}}}{\text{][L]}}}}{{{\text{[}}{{\text{T}}^1}{\text{][}}{{\text{L}}^{\text{2}}}{\text{]}}}}{\text{ = [}}{{\text{M}}^1}{{\text{L}}^0}{{\text{T}}^{{\text{ - 3}}}}{\text{]}}$
The dimensional formula for solar constant is ${\text{[}}{{\text{M}}^1}{{\text{L}}^0}{{\text{T}}^{{\text{ - 3}}}}{\text{]}}$
Therefore, option (C) is the correct choice.
Note: Dimensions are denoted with square brackets. The dimensional formula of length, mass, time, electric current, thermodynamic temperature, luminous intensity and amount of substance are [L], [M], [A], [K], [Cd] and [mol] respectively. These are the quantities from which all other secondary quantities can be obtained.
Recently Updated Pages
Write a composition in approximately 450 500 words class 10 english JEE_Main
Arrange the sentences P Q R between S1 and S5 such class 10 english JEE_Main
Write an article on the need and importance of sports class 10 english JEE_Main
Name the scale on which the destructive energy of an class 11 physics JEE_Main
Choose the exact meaning of the given idiomphrase The class 9 english JEE_Main
Choose the one which best expresses the meaning of class 9 english JEE_Main
Other Pages
The values of kinetic energy K and potential energy class 11 physics JEE_Main
What torque will increase the angular velocity of a class 11 physics JEE_Main
BF3 reacts with NaH at 450 K to form NaF and X When class 11 chemistry JEE_Main
Electric field due to uniformly charged sphere class 12 physics JEE_Main
In the reaction of KMnO4 with H2C204 20 mL of 02 M class 12 chemistry JEE_Main
Dependence of intensity of gravitational field E of class 11 physics JEE_Main