The solar constant is defined as the energy incident per unit area per second. The dimensional formula for solar constant is:
$
{\text{(A) [}}{{\text{M}}^{\text{0}}}{{\text{L}}^{\text{0}}}{{\text{T}}^{\text{0}}}{\text{]}} \\
{\text{(B) [ML}}{{\text{T}}^{{\text{ - 2}}}}{\text{]}} \\
{\text{(C) [}}{{\text{M}}^{\text{0}}}{{\text{L}}^{\text{2}}}{{\text{T}}^{{\text{ - 2}}}}{\text{]}} \\
{\text{(D) [M}}{{\text{L}}^{\text{0}}}{{\text{T}}^{{\text{ - 3}}}}{\text{]}} \\
$
Answer
Verified
122.7k+ views
Hint: For finding the dimensional formula of any quantity first of all write the formula related to that quantity. Here the solar constant is defined as the energy incident per unit area per second. Write the dimensional formula of the power and the dimensional formula of area and then simplify to get the dimensional formula of solar constant.
Complete solution:
Solar constant is defined as the total radiation energy received from the Sun per unit of time per unit of area.
Units of solar constant ${\text{ = }}\dfrac{{{\text{power}}}}{{{\text{area}}}}$
The S.I. unit of power is watt (represented by W)
S.I. unit of area is metre square (represented by ${{\text{m}}^{\text{2}}}$)
Thus, the S.I. units of solar constant ${\text{ = }}\dfrac{{\text{W}}}{{{{\text{m}}^{\text{2}}}}}$
A body is said to have power of ${\text{1 Watt}}$ if the body does work of ${\text{1 Joule}}$ in ${\text{1 second}}$.
So, ${\text{1 Watt = }}\dfrac{{{\text{1 joule}}}}{{{\text{1 sec}}}}$
Also, One joule of work is done on an object when a force of one newton (represented by ${\text{1 N}}$) is applied over a distance of one meter (represented by ${\text{1 m}}$).
So, ${\text{1 joule = }}\dfrac{{{\text{1 newton}}}}{{{\text{1 metre}}}}$
Thus, the S.I. units of solar constant is $\dfrac{{{\text{N m}}}}{{{\text{s }}{{\text{m}}^2}}}$.
Now the dimensional formula of force whose S.I. unit is newton is given by ${\text{[ML}}{{\text{T}}^{{\text{ - 2}}}}{\text{]}}$
Dimensional formula of distance whose S.I. unit is metre is given by ${\text{[}}{{\text{M}}^{\text{0}}}{{\text{L}}^{\text{1}}}{{\text{T}}^{\text{0}}}{\text{]}}$
Dimensional formula of time whose S.I. units is second is given by ${\text{[ML}}{{\text{T}}^1}{\text{]}}$
Thus, dimensional formula of solar constant is $\dfrac{{{\text{[}}{{\text{M}}^1}{{\text{L}}^1}{{\text{T}}^{{\text{ - 2}}}}{\text{][L]}}}}{{{\text{[}}{{\text{T}}^1}{\text{][}}{{\text{L}}^{\text{2}}}{\text{]}}}}{\text{ = [}}{{\text{M}}^1}{{\text{L}}^0}{{\text{T}}^{{\text{ - 3}}}}{\text{]}}$
The dimensional formula for solar constant is ${\text{[}}{{\text{M}}^1}{{\text{L}}^0}{{\text{T}}^{{\text{ - 3}}}}{\text{]}}$
Therefore, option (C) is the correct choice.
Note: Dimensions are denoted with square brackets. The dimensional formula of length, mass, time, electric current, thermodynamic temperature, luminous intensity and amount of substance are [L], [M], [A], [K], [Cd] and [mol] respectively. These are the quantities from which all other secondary quantities can be obtained.
Complete solution:
Solar constant is defined as the total radiation energy received from the Sun per unit of time per unit of area.
Units of solar constant ${\text{ = }}\dfrac{{{\text{power}}}}{{{\text{area}}}}$
The S.I. unit of power is watt (represented by W)
S.I. unit of area is metre square (represented by ${{\text{m}}^{\text{2}}}$)
Thus, the S.I. units of solar constant ${\text{ = }}\dfrac{{\text{W}}}{{{{\text{m}}^{\text{2}}}}}$
A body is said to have power of ${\text{1 Watt}}$ if the body does work of ${\text{1 Joule}}$ in ${\text{1 second}}$.
So, ${\text{1 Watt = }}\dfrac{{{\text{1 joule}}}}{{{\text{1 sec}}}}$
Also, One joule of work is done on an object when a force of one newton (represented by ${\text{1 N}}$) is applied over a distance of one meter (represented by ${\text{1 m}}$).
So, ${\text{1 joule = }}\dfrac{{{\text{1 newton}}}}{{{\text{1 metre}}}}$
Thus, the S.I. units of solar constant is $\dfrac{{{\text{N m}}}}{{{\text{s }}{{\text{m}}^2}}}$.
Now the dimensional formula of force whose S.I. unit is newton is given by ${\text{[ML}}{{\text{T}}^{{\text{ - 2}}}}{\text{]}}$
Dimensional formula of distance whose S.I. unit is metre is given by ${\text{[}}{{\text{M}}^{\text{0}}}{{\text{L}}^{\text{1}}}{{\text{T}}^{\text{0}}}{\text{]}}$
Dimensional formula of time whose S.I. units is second is given by ${\text{[ML}}{{\text{T}}^1}{\text{]}}$
Thus, dimensional formula of solar constant is $\dfrac{{{\text{[}}{{\text{M}}^1}{{\text{L}}^1}{{\text{T}}^{{\text{ - 2}}}}{\text{][L]}}}}{{{\text{[}}{{\text{T}}^1}{\text{][}}{{\text{L}}^{\text{2}}}{\text{]}}}}{\text{ = [}}{{\text{M}}^1}{{\text{L}}^0}{{\text{T}}^{{\text{ - 3}}}}{\text{]}}$
The dimensional formula for solar constant is ${\text{[}}{{\text{M}}^1}{{\text{L}}^0}{{\text{T}}^{{\text{ - 3}}}}{\text{]}}$
Therefore, option (C) is the correct choice.
Note: Dimensions are denoted with square brackets. The dimensional formula of length, mass, time, electric current, thermodynamic temperature, luminous intensity and amount of substance are [L], [M], [A], [K], [Cd] and [mol] respectively. These are the quantities from which all other secondary quantities can be obtained.
Recently Updated Pages
The ratio of the diameters of two metallic rods of class 11 physics JEE_Main
What is the difference between Conduction and conv class 11 physics JEE_Main
Mark the correct statements about the friction between class 11 physics JEE_Main
Find the acceleration of the wedge towards the right class 11 physics JEE_Main
A standing wave is formed by the superposition of two class 11 physics JEE_Main
Derive an expression for work done by the gas in an class 11 physics JEE_Main
Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility & More
JEE Main Login 2045: Step-by-Step Instructions and Details
Class 11 JEE Main Physics Mock Test 2025
JEE Main Chemistry Question Paper with Answer Keys and Solutions
JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking
JEE Main 2023 January 24 Shift 2 Question Paper with Answer Keys & Solutions
Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs
NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements
NCERT Solutions for Class 11 Physics Chapter 9 Mechanical Properties of Fluids
Units and Measurements Class 11 Notes: CBSE Physics Chapter 1
JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More
NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line