Answer
Verified
110.7k+ views
Hint: In this question we are going to find the sum of lengths of two different rods of different metals, hence linear expansion will also be different for each rod. So firstly we find their linear expansions, then applying the conditions of sum and difference we have.
Formula used:
The linear expansion of any linear body (rod/wire) is given by-
\[\alpha = \Delta L/L \times \Delta T\]
Where \[\alpha \] is coefficient of linear expansion, \[\Delta L\] is change in length, \[L\] is original length, \[\Delta T\] is the Temperature difference
Complete step by step solution:
When we increase the temperature of any rod then the length of rod will increase. And the expansion of aluminium is greater than the expansion of steel. But in this question we have only the difference in the lengths, we can algebraically solve this question and find the sum of lengths of the rods. For this suppose the lengths of aluminium and steel rod be \[{L_a}\] and \[{L_S}\] respectively.
And \[\Delta {L_a}\] or \[\Delta {L_S}\] are the changes in lengths of both rods. Under the same temperature difference as we are going to find length at \[{0^ \circ }C\].
And the linear coefficients of both rods are \[{\alpha _a}\] and \[{\alpha _s}\] respectively.
Now, according to the question, we have given, \[{T_1} = {0^ \circ }C\]
\[
\Delta T = {T_2} - {T_1} \\
\Rightarrow \Delta T = T - 0 \\
\Rightarrow \Delta T = {T^ \circ }C \\
\]
And the change in length-
\[{L_s} - {L_a} = 0.25m\] …………(i)
According to the question, we have \[{\alpha _a}\]=\[22 \times {10^{ - 6}}/ ^\circ C\], \[{\alpha _s}\]=\[11 \times {10^{ - 6}}/ ^\circ C\]then we have to find \[{L_a} + {L_s} = \]?
We know that
\[\Rightarrow {\alpha _a} = \Delta {L_a}/{L_a} \times \Delta T\]
\[\Rightarrow \Delta {L_a} = {\alpha _a}{L_a} \times \Delta T\]……….(ii)
Similarly, \[\Delta {L_s} = {\alpha _s}{L_s} \times \Delta T\]…………(iii)
According to the question the change in length at all temperatures is the same.
So \[\Rightarrow \Delta {L_s} = \Delta {L_a}\]
\[ \Rightarrow {\alpha _a}{L_a} \times \Delta T\]\[ = {\alpha _s}{L_s} \times \Delta T\]
\[ \Rightarrow {\alpha _a}{L_a}\]\[ = {\alpha _s}{L_s}\]
\[ \Rightarrow 22 \times {10^{ - 6}} \times {L_a} = 11 \times {10^{ - 6}} \times {L_S}\]
\[ \Rightarrow 2{L_a} = {L_S}\]
Put this value in equation (i)-
\[
\Rightarrow {L_s} - {L_a} = 0.25 \\
\Rightarrow 2{L_a} - {L_a} = 0.25 \\
\Rightarrow {L_a} = 0.25m
\]
Now \[{L_s} = 2{L_a}\]
\[
\Rightarrow {L_s} = 2 \times 0.25 \\
\Rightarrow {L_s} = 0.50m
\]
So
\[
\Rightarrow {L_a} + {L_s} = 0.25 + 0.50 \\
\Rightarrow {L_a} + {L_s} = 0.75m
\]
Therefore, the sum of length of both rods at \[{0^ \circ }C\] is \[0.75m\].
Additional information:
Linear expansion: When the temperature between the ends of any rod/wire changes, an increase in length occurs. This expansion in length is called linear expansion. It is a thermal process i.e. only depends on the temperature difference.
Note: We have to remember that the linear expansion is produced due to thermal strain which we have learnt in the topic elasticity. i.e. \[\Delta L/L = \alpha \times \Delta T\] And remember that linear expansion is only applicable on longitudinal problems. We have to keep in mind that the temperature should be changed in kelvin for the calculations.
Formula used:
The linear expansion of any linear body (rod/wire) is given by-
\[\alpha = \Delta L/L \times \Delta T\]
Where \[\alpha \] is coefficient of linear expansion, \[\Delta L\] is change in length, \[L\] is original length, \[\Delta T\] is the Temperature difference
Complete step by step solution:
When we increase the temperature of any rod then the length of rod will increase. And the expansion of aluminium is greater than the expansion of steel. But in this question we have only the difference in the lengths, we can algebraically solve this question and find the sum of lengths of the rods. For this suppose the lengths of aluminium and steel rod be \[{L_a}\] and \[{L_S}\] respectively.
And \[\Delta {L_a}\] or \[\Delta {L_S}\] are the changes in lengths of both rods. Under the same temperature difference as we are going to find length at \[{0^ \circ }C\].
And the linear coefficients of both rods are \[{\alpha _a}\] and \[{\alpha _s}\] respectively.
Now, according to the question, we have given, \[{T_1} = {0^ \circ }C\]
\[
\Delta T = {T_2} - {T_1} \\
\Rightarrow \Delta T = T - 0 \\
\Rightarrow \Delta T = {T^ \circ }C \\
\]
And the change in length-
\[{L_s} - {L_a} = 0.25m\] …………(i)
According to the question, we have \[{\alpha _a}\]=\[22 \times {10^{ - 6}}/ ^\circ C\], \[{\alpha _s}\]=\[11 \times {10^{ - 6}}/ ^\circ C\]then we have to find \[{L_a} + {L_s} = \]?
We know that
\[\Rightarrow {\alpha _a} = \Delta {L_a}/{L_a} \times \Delta T\]
\[\Rightarrow \Delta {L_a} = {\alpha _a}{L_a} \times \Delta T\]……….(ii)
Similarly, \[\Delta {L_s} = {\alpha _s}{L_s} \times \Delta T\]…………(iii)
According to the question the change in length at all temperatures is the same.
So \[\Rightarrow \Delta {L_s} = \Delta {L_a}\]
\[ \Rightarrow {\alpha _a}{L_a} \times \Delta T\]\[ = {\alpha _s}{L_s} \times \Delta T\]
\[ \Rightarrow {\alpha _a}{L_a}\]\[ = {\alpha _s}{L_s}\]
\[ \Rightarrow 22 \times {10^{ - 6}} \times {L_a} = 11 \times {10^{ - 6}} \times {L_S}\]
\[ \Rightarrow 2{L_a} = {L_S}\]
Put this value in equation (i)-
\[
\Rightarrow {L_s} - {L_a} = 0.25 \\
\Rightarrow 2{L_a} - {L_a} = 0.25 \\
\Rightarrow {L_a} = 0.25m
\]
Now \[{L_s} = 2{L_a}\]
\[
\Rightarrow {L_s} = 2 \times 0.25 \\
\Rightarrow {L_s} = 0.50m
\]
So
\[
\Rightarrow {L_a} + {L_s} = 0.25 + 0.50 \\
\Rightarrow {L_a} + {L_s} = 0.75m
\]
Therefore, the sum of length of both rods at \[{0^ \circ }C\] is \[0.75m\].
Additional information:
Linear expansion: When the temperature between the ends of any rod/wire changes, an increase in length occurs. This expansion in length is called linear expansion. It is a thermal process i.e. only depends on the temperature difference.
Note: We have to remember that the linear expansion is produced due to thermal strain which we have learnt in the topic elasticity. i.e. \[\Delta L/L = \alpha \times \Delta T\] And remember that linear expansion is only applicable on longitudinal problems. We have to keep in mind that the temperature should be changed in kelvin for the calculations.
Recently Updated Pages
Write an article on the need and importance of sports class 10 english JEE_Main
Write a composition in approximately 450 500 words class 10 english JEE_Main
Arrange the sentences P Q R between S1 and S5 such class 10 english JEE_Main
If x2 hx 21 0x2 3hx + 35 0h 0 has a common root then class 10 maths JEE_Main
The radius of a sector is 12 cm and the angle is 120circ class 10 maths JEE_Main
For what value of x function fleft x right x4 4x3 + class 10 maths JEE_Main
Other Pages
If a wire of resistance R is stretched to double of class 12 physics JEE_Main
The energy stored is a condenser is in the form of class 12 physics JEE_Main
Excluding stoppages the speed of a bus is 54 kmph and class 11 maths JEE_Main
Electric field due to uniformly charged sphere class 12 physics JEE_Main
In Searles apparatus when the experimental wire is class 11 physics JEE_Main