
The sum of the coefficients of the expression ${{\left( \dfrac{1}{x}+2x \right)}^{6}}$ is equal to
[a] 1024
[b] 729
[c] 243
[d] 512
[e] 64
Answer
232.8k+ views
Hint: Expand the given expression by using binomial theorem and find the coefficients of the terms involved in the expression. Calculate the sum of these coefficients to get the result. Instead of making use of binomial theorem, you can also use Pascal's triangle to get the binomial coefficients.
Complete step-by-step answer:
We know from binomial theorem;
${{\left( x+y \right)}^{n}}={}^{n}{{C}_{0}}{{x}^{n}}{{y}^{0}}+{}^{n}{{C}_{1}}{{x}^{n-1}}{{y}^{1}}+\ldots +{}^{n}{{C}_{n}}{{x}^{0}}{{y}^{n}}$
Putting n = 6, $x=\dfrac{1}{x}$ and $y=2x$ in the above expression, we get
${{\left( \dfrac{1}{x}+2x \right)}^{6}}={}^{6}{{C}_{0}}{{\left( \dfrac{1}{x} \right)}^{6}}{{\left( 2x \right)}^{0}}+{}^{6}{{C}_{1}}{{\left( \dfrac{1}{x} \right)}^{5}}{{\left( 2x \right)}^{1}}+{}^{6}{{C}_{2}}{{\left( \dfrac{1}{x} \right)}^{4}}{{\left( 2x \right)}^{2}}+{}^{6}{{C}_{3}}{{\left( \dfrac{1}{x} \right)}^{3}}{{\left( 2x \right)}^{3}}+{}^{6}{{C}_{4}}{{\left( \dfrac{1}{x} \right)}^{2}}{{\left( 2x \right)}^{4}}+{}^{6}{{C}_{5}}{{\left( \dfrac{1}{x} \right)}^{1}}{{\left( 2x \right)}^{5}}+{}^{6}{{C}_{6}}{{\left( \dfrac{1}{x} \right)}^{0}}{{\left( 2x \right)}^{6}}$
Now we know that \[{}^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}\]
Using the above formula, we get
$\begin{align}
& {}^{6}{{C}_{0}}=\dfrac{6!}{0!\left( 6-0 \right)!}=\dfrac{6!}{6!}=1 \\
& {}^{6}{{C}_{1}}=\dfrac{6!}{1!\left( 6-1 \right)!}=\dfrac{6\times 5!}{1!5!}=6 \\
& {}^{6}{{C}_{2}}=\dfrac{6!}{2!\left( 6-2 \right)!}=\dfrac{6\times 5\times 4!}{2!4!}=\dfrac{30}{2}=15 \\
& {}^{6}{{C}_{3}}=\dfrac{6!}{3!3!}=\dfrac{6\times 5\times 4\times 3!}{3!3!}=\dfrac{6\times 5\times 4}{6}=20 \\
\end{align}$
We know that ${}^{n}{{C}_{r}}={}^{n}{{C}_{n-r}}$
Using we get
$\begin{align}
& {}^{6}{{C}_{4}}={}^{6}{{C}_{2}}=15 \\
& {}^{6}{{C}_{5}}={}^{6}{{C}_{1}}=6 \\
& {}^{6}{{C}_{6}}={}^{6}{{C}_{0}}=1 \\
\end{align}$
Hence we have
${{\left( \dfrac{1}{x}+2x \right)}^{6}}=1{{\left( \dfrac{1}{x} \right)}^{6}}{{\left( 2x \right)}^{0}}+6{{\left( \dfrac{1}{x} \right)}^{5}}{{\left( 2x \right)}^{1}}+15{{\left( \dfrac{1}{x} \right)}^{4}}{{\left( 2x \right)}^{2}}+20{{\left( \dfrac{1}{x} \right)}^{3}}{{\left( 2x \right)}^{3}}+15{{\left( \dfrac{1}{x} \right)}^{2}}{{\left( 2x \right)}^{4}}+6{{\left( \dfrac{1}{x} \right)}^{1}}{{\left( 2x \right)}^{5}}+1{{\left( \dfrac{1}{x} \right)}^{0}}{{\left( 2x \right)}^{6}}$
Simplifying, we get
${{\left( \dfrac{1}{x}+2x \right)}^{6}}=\dfrac{1}{{{x}^{6}}}+\dfrac{12}{{{x}^{4}}}+\dfrac{60}{{{x}^{2}}}+160+240{{x}^{2}}+192{{x}^{4}}+64{{x}^{6}}$
Hence the sum of coefficients = 1+12+60+160+240+192+64=729
Note: [1] Alternative solution 1: Construct pascal triangle till n = 6
$\begin{align}
& 1 \\
& 1\text{ 1} \\
& \text{1 2 1} \\
& \text{1 3 3 1} \\
& \text{1 4 6 4 1} \\
& \text{1 5 10 10 5 1} \\
& \text{1 6 15 20 15 6 1} \\
\end{align}$
Hence we have the binomial coefficients as 1, 6, 15, 20, 15, 6 and 1, which is the same as above.
[2] Alternative solution 2: Best Method.
Let the expansion of the given expression be ${{a}_{0}}{{x}^{6}}+{{a}_{1}}{{x}^{5}}+\ldots +{{a}_{12}}{{x}^{-6}}$
Hence we have
${{\left( \dfrac{1}{x}+2x \right)}^{6}}={{a}_{0}}{{x}^{6}}+{{a}_{1}}{{x}^{5}}+\ldots +{{a}_{12}}{{x}^{-6}}$
Put x = 1, we get
$\begin{align}
& {{\left( \dfrac{1}{1}+2\left( 1 \right) \right)}^{6}}={{a}_{0}}{{1}^{6}}+{{a}_{1}}{{1}^{5}}+\ldots +{{a}_{12}}{{1}^{-6}} \\
& \Rightarrow \sum\limits_{i=0}^{12}{{{a}_{i}}={{3}^{6}}=729} \\
\end{align}$
Hence the sum of the coefficients = 729.
[3] Some times, the question asks to find the value of the constant term. In that case, if $x=0$ is within the domain of the expression then put x = 0 to get the result, e.g. Find the constant term in the expansion of the expression ${{\left( 2{{x}^{3}}+3{{x}^{2}}+9 \right)}^{9}}$.
Since x = 0 is in the domain put x = 0 we get ${{\left( 2\times 0+3\times 0+9 \right)}^{9}}={{9}^{9}}$
Hence the constant term in the expansion of the expression is ${{9}^{9}}$.
Complete step-by-step answer:
We know from binomial theorem;
${{\left( x+y \right)}^{n}}={}^{n}{{C}_{0}}{{x}^{n}}{{y}^{0}}+{}^{n}{{C}_{1}}{{x}^{n-1}}{{y}^{1}}+\ldots +{}^{n}{{C}_{n}}{{x}^{0}}{{y}^{n}}$
Putting n = 6, $x=\dfrac{1}{x}$ and $y=2x$ in the above expression, we get
${{\left( \dfrac{1}{x}+2x \right)}^{6}}={}^{6}{{C}_{0}}{{\left( \dfrac{1}{x} \right)}^{6}}{{\left( 2x \right)}^{0}}+{}^{6}{{C}_{1}}{{\left( \dfrac{1}{x} \right)}^{5}}{{\left( 2x \right)}^{1}}+{}^{6}{{C}_{2}}{{\left( \dfrac{1}{x} \right)}^{4}}{{\left( 2x \right)}^{2}}+{}^{6}{{C}_{3}}{{\left( \dfrac{1}{x} \right)}^{3}}{{\left( 2x \right)}^{3}}+{}^{6}{{C}_{4}}{{\left( \dfrac{1}{x} \right)}^{2}}{{\left( 2x \right)}^{4}}+{}^{6}{{C}_{5}}{{\left( \dfrac{1}{x} \right)}^{1}}{{\left( 2x \right)}^{5}}+{}^{6}{{C}_{6}}{{\left( \dfrac{1}{x} \right)}^{0}}{{\left( 2x \right)}^{6}}$
Now we know that \[{}^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}\]
Using the above formula, we get
$\begin{align}
& {}^{6}{{C}_{0}}=\dfrac{6!}{0!\left( 6-0 \right)!}=\dfrac{6!}{6!}=1 \\
& {}^{6}{{C}_{1}}=\dfrac{6!}{1!\left( 6-1 \right)!}=\dfrac{6\times 5!}{1!5!}=6 \\
& {}^{6}{{C}_{2}}=\dfrac{6!}{2!\left( 6-2 \right)!}=\dfrac{6\times 5\times 4!}{2!4!}=\dfrac{30}{2}=15 \\
& {}^{6}{{C}_{3}}=\dfrac{6!}{3!3!}=\dfrac{6\times 5\times 4\times 3!}{3!3!}=\dfrac{6\times 5\times 4}{6}=20 \\
\end{align}$
We know that ${}^{n}{{C}_{r}}={}^{n}{{C}_{n-r}}$
Using we get
$\begin{align}
& {}^{6}{{C}_{4}}={}^{6}{{C}_{2}}=15 \\
& {}^{6}{{C}_{5}}={}^{6}{{C}_{1}}=6 \\
& {}^{6}{{C}_{6}}={}^{6}{{C}_{0}}=1 \\
\end{align}$
Hence we have
${{\left( \dfrac{1}{x}+2x \right)}^{6}}=1{{\left( \dfrac{1}{x} \right)}^{6}}{{\left( 2x \right)}^{0}}+6{{\left( \dfrac{1}{x} \right)}^{5}}{{\left( 2x \right)}^{1}}+15{{\left( \dfrac{1}{x} \right)}^{4}}{{\left( 2x \right)}^{2}}+20{{\left( \dfrac{1}{x} \right)}^{3}}{{\left( 2x \right)}^{3}}+15{{\left( \dfrac{1}{x} \right)}^{2}}{{\left( 2x \right)}^{4}}+6{{\left( \dfrac{1}{x} \right)}^{1}}{{\left( 2x \right)}^{5}}+1{{\left( \dfrac{1}{x} \right)}^{0}}{{\left( 2x \right)}^{6}}$
Simplifying, we get
${{\left( \dfrac{1}{x}+2x \right)}^{6}}=\dfrac{1}{{{x}^{6}}}+\dfrac{12}{{{x}^{4}}}+\dfrac{60}{{{x}^{2}}}+160+240{{x}^{2}}+192{{x}^{4}}+64{{x}^{6}}$
Hence the sum of coefficients = 1+12+60+160+240+192+64=729
Note: [1] Alternative solution 1: Construct pascal triangle till n = 6
$\begin{align}
& 1 \\
& 1\text{ 1} \\
& \text{1 2 1} \\
& \text{1 3 3 1} \\
& \text{1 4 6 4 1} \\
& \text{1 5 10 10 5 1} \\
& \text{1 6 15 20 15 6 1} \\
\end{align}$
Hence we have the binomial coefficients as 1, 6, 15, 20, 15, 6 and 1, which is the same as above.
[2] Alternative solution 2: Best Method.
Let the expansion of the given expression be ${{a}_{0}}{{x}^{6}}+{{a}_{1}}{{x}^{5}}+\ldots +{{a}_{12}}{{x}^{-6}}$
Hence we have
${{\left( \dfrac{1}{x}+2x \right)}^{6}}={{a}_{0}}{{x}^{6}}+{{a}_{1}}{{x}^{5}}+\ldots +{{a}_{12}}{{x}^{-6}}$
Put x = 1, we get
$\begin{align}
& {{\left( \dfrac{1}{1}+2\left( 1 \right) \right)}^{6}}={{a}_{0}}{{1}^{6}}+{{a}_{1}}{{1}^{5}}+\ldots +{{a}_{12}}{{1}^{-6}} \\
& \Rightarrow \sum\limits_{i=0}^{12}{{{a}_{i}}={{3}^{6}}=729} \\
\end{align}$
Hence the sum of the coefficients = 729.
[3] Some times, the question asks to find the value of the constant term. In that case, if $x=0$ is within the domain of the expression then put x = 0 to get the result, e.g. Find the constant term in the expansion of the expression ${{\left( 2{{x}^{3}}+3{{x}^{2}}+9 \right)}^{9}}$.
Since x = 0 is in the domain put x = 0 we get ${{\left( 2\times 0+3\times 0+9 \right)}^{9}}={{9}^{9}}$
Hence the constant term in the expansion of the expression is ${{9}^{9}}$.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding the Electric Field of a Uniformly Charged Ring

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 11 Maths Chapter 12 Limits and Derivatives (2025-26)

NCERT Solutions For Class 11 Maths Chapter 10 Conic Sections (2025-26)

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

