Answer
Verified
112.8k+ views
Hint: The radioactive decay constant is defined as the probability of a given unstable nucleus decaying per unit time. It is denoted by $\lambda$. The mathematical formula of decay constant is $\lambda \quad =\quad \cfrac { 0.693 }{ T }$
Complete step by step answer: It is given in the question that activity of the element is reduced to 90% of its original value which means that 10% of the element is used. The reaction here that is taking place is a first order reaction.
Therefore, the half-life (T) for a first order reaction is given as the ratio of 0.693 to the decay constant.
$ T = \cfrac { 0.693 }{ \lambda }$
$\implies \lambda = \cfrac { 0.693 }{ T }$
It is given that the half-life of the element is $1.4 \times {10}^{10} years$. Substituting this value in this above equation, we get
$ \lambda = \cfrac { 0.693 }{ 1.4 \times { 10 }^{ 10 } }$
Now, the kinetic equation for the first order reaction is given as
$ t = \cfrac { 2.303 }{ \lambda } \log { (\cfrac { { N }_{ 0 } }{ N } } )$ -----(1)
Where $\lambda$ is the decay constant, ${N}_{0}$ is the initial concentration at time 0, N is the final concentration at time t and t is the activity time.
Let us assume that the initial concentration was 100. Thus, the final concentration will be 90 and $ \lambda = \cfrac { 0.693 }{ 1.4 \times { 10 }^{ 10 } }$. Substituting these values in equation (1), we get
$td = \cfrac { 2.303 }{ \cfrac { 0.693 }{ 1.4 \times { 10 }^{ 10 } } } \log { (\cfrac { 100 }{ 90 } } )$
$\implies t = \cfrac { 2.303 }{ 0.693 } \times 1.4\quad \times { 10 }^{ 10 } \times \log { (\cfrac { 10 }{ 9 } } )$
$\implies t = 2.128 \times { 10 }^{ 9 } years$
Therefore, the activity time is $2.128 \times { 10 }^{ 9 } years$. Hence, the correct answer is option (A).
Note: While calculating the decay constant, do make sure that the base of the log is 10 else you might end up getting the wrong answer. The half-life of a sample is 69.3% of the mean life which is reciprocal of the decay constant. It is applicable for any sample.
Complete step by step answer: It is given in the question that activity of the element is reduced to 90% of its original value which means that 10% of the element is used. The reaction here that is taking place is a first order reaction.
Therefore, the half-life (T) for a first order reaction is given as the ratio of 0.693 to the decay constant.
$ T = \cfrac { 0.693 }{ \lambda }$
$\implies \lambda = \cfrac { 0.693 }{ T }$
It is given that the half-life of the element is $1.4 \times {10}^{10} years$. Substituting this value in this above equation, we get
$ \lambda = \cfrac { 0.693 }{ 1.4 \times { 10 }^{ 10 } }$
Now, the kinetic equation for the first order reaction is given as
$ t = \cfrac { 2.303 }{ \lambda } \log { (\cfrac { { N }_{ 0 } }{ N } } )$ -----(1)
Where $\lambda$ is the decay constant, ${N}_{0}$ is the initial concentration at time 0, N is the final concentration at time t and t is the activity time.
Let us assume that the initial concentration was 100. Thus, the final concentration will be 90 and $ \lambda = \cfrac { 0.693 }{ 1.4 \times { 10 }^{ 10 } }$. Substituting these values in equation (1), we get
$td = \cfrac { 2.303 }{ \cfrac { 0.693 }{ 1.4 \times { 10 }^{ 10 } } } \log { (\cfrac { 100 }{ 90 } } )$
$\implies t = \cfrac { 2.303 }{ 0.693 } \times 1.4\quad \times { 10 }^{ 10 } \times \log { (\cfrac { 10 }{ 9 } } )$
$\implies t = 2.128 \times { 10 }^{ 9 } years$
Therefore, the activity time is $2.128 \times { 10 }^{ 9 } years$. Hence, the correct answer is option (A).
Note: While calculating the decay constant, do make sure that the base of the log is 10 else you might end up getting the wrong answer. The half-life of a sample is 69.3% of the mean life which is reciprocal of the decay constant. It is applicable for any sample.
Recently Updated Pages
JEE Main 2021 July 25 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 20 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key
JEE Main Chemistry Question Paper PDF Download with Answer Key
JEE Main 2023 (January 30th Shift 1) Physics Question Paper with Answer Key
Trending doubts
Average and RMS Value for JEE Main
Inductive Effect and Acidic Strength - Types, Relation and Applications for JEE
Displacement-Time Graph and Velocity-Time Graph for JEE
Clemmenson and Wolff Kishner Reductions for JEE
Semicircular Ring - Centre of Mass and Its Application for JEE
Oxidation state of S in H2S2O8 is A 6 B 7 C +8 D 0 class 12 chemistry JEE_Main
Other Pages
Biomolecules Class 12 Notes: CBSE Chemistry Chapter 10
NCERT Solutions for Class 12 Chemistry Chapter 3 Chemical Kinetics
Test for Phenolic Group
JEE Advanced 2025 Revision Notes for Practical Organic Chemistry
JEE Advanced 2025 Notes
The correct statement s from the following isare i class 12 chemistry JEE_Main