
The time in which the activity of an element reduces to 90% of its original value is:
The half-life period of the element is $1.4 \times {10}^{10} years$.
A. $2.128 \times {10}^{9} years$
B. $1.578 \times {10}^{7} years$
C. $6.954 \times {10}^{7} years$
D. None of these
Answer
141.3k+ views
Hint: The radioactive decay constant is defined as the probability of a given unstable nucleus decaying per unit time. It is denoted by $\lambda$. The mathematical formula of decay constant is $\lambda \quad =\quad \cfrac { 0.693 }{ T }$
Complete step by step answer: It is given in the question that activity of the element is reduced to 90% of its original value which means that 10% of the element is used. The reaction here that is taking place is a first order reaction.
Therefore, the half-life (T) for a first order reaction is given as the ratio of 0.693 to the decay constant.
$ T = \cfrac { 0.693 }{ \lambda }$
$\implies \lambda = \cfrac { 0.693 }{ T }$
It is given that the half-life of the element is $1.4 \times {10}^{10} years$. Substituting this value in this above equation, we get
$ \lambda = \cfrac { 0.693 }{ 1.4 \times { 10 }^{ 10 } }$
Now, the kinetic equation for the first order reaction is given as
$ t = \cfrac { 2.303 }{ \lambda } \log { (\cfrac { { N }_{ 0 } }{ N } } )$ -----(1)
Where $\lambda$ is the decay constant, ${N}_{0}$ is the initial concentration at time 0, N is the final concentration at time t and t is the activity time.
Let us assume that the initial concentration was 100. Thus, the final concentration will be 90 and $ \lambda = \cfrac { 0.693 }{ 1.4 \times { 10 }^{ 10 } }$. Substituting these values in equation (1), we get
$td = \cfrac { 2.303 }{ \cfrac { 0.693 }{ 1.4 \times { 10 }^{ 10 } } } \log { (\cfrac { 100 }{ 90 } } )$
$\implies t = \cfrac { 2.303 }{ 0.693 } \times 1.4\quad \times { 10 }^{ 10 } \times \log { (\cfrac { 10 }{ 9 } } )$
$\implies t = 2.128 \times { 10 }^{ 9 } years$
Therefore, the activity time is $2.128 \times { 10 }^{ 9 } years$. Hence, the correct answer is option (A).
Note: While calculating the decay constant, do make sure that the base of the log is 10 else you might end up getting the wrong answer. The half-life of a sample is 69.3% of the mean life which is reciprocal of the decay constant. It is applicable for any sample.
Complete step by step answer: It is given in the question that activity of the element is reduced to 90% of its original value which means that 10% of the element is used. The reaction here that is taking place is a first order reaction.
Therefore, the half-life (T) for a first order reaction is given as the ratio of 0.693 to the decay constant.
$ T = \cfrac { 0.693 }{ \lambda }$
$\implies \lambda = \cfrac { 0.693 }{ T }$
It is given that the half-life of the element is $1.4 \times {10}^{10} years$. Substituting this value in this above equation, we get
$ \lambda = \cfrac { 0.693 }{ 1.4 \times { 10 }^{ 10 } }$
Now, the kinetic equation for the first order reaction is given as
$ t = \cfrac { 2.303 }{ \lambda } \log { (\cfrac { { N }_{ 0 } }{ N } } )$ -----(1)
Where $\lambda$ is the decay constant, ${N}_{0}$ is the initial concentration at time 0, N is the final concentration at time t and t is the activity time.
Let us assume that the initial concentration was 100. Thus, the final concentration will be 90 and $ \lambda = \cfrac { 0.693 }{ 1.4 \times { 10 }^{ 10 } }$. Substituting these values in equation (1), we get
$td = \cfrac { 2.303 }{ \cfrac { 0.693 }{ 1.4 \times { 10 }^{ 10 } } } \log { (\cfrac { 100 }{ 90 } } )$
$\implies t = \cfrac { 2.303 }{ 0.693 } \times 1.4\quad \times { 10 }^{ 10 } \times \log { (\cfrac { 10 }{ 9 } } )$
$\implies t = 2.128 \times { 10 }^{ 9 } years$
Therefore, the activity time is $2.128 \times { 10 }^{ 9 } years$. Hence, the correct answer is option (A).
Note: While calculating the decay constant, do make sure that the base of the log is 10 else you might end up getting the wrong answer. The half-life of a sample is 69.3% of the mean life which is reciprocal of the decay constant. It is applicable for any sample.
Recently Updated Pages
Classification of Drugs Based on Pharmacological Effect, Drug Action

Difference Between Alcohol and Phenol

JEE Main Participating Colleges 2024 - A Complete List of Top Colleges

JEE Main Maths Paper Pattern 2025 – Marking, Sections & Tips

Sign up for JEE Main 2025 Live Classes - Vedantu

JEE Main 2025 Helpline Numbers - Center Contact, Phone Number, Address

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Types of Solutions

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Other Pages
NCERT Solutions for Class 12 Chemistry Chapter 6 Haloalkanes and Haloarenes

NCERT Solutions for Class 12 Chemistry Chapter 2 Electrochemistry

NCERT Solutions for Class 12 Chemistry Chapter 7 Alcohol Phenol and Ether

NCERT Solutions for Class 12 Chemistry Chapter 1 Solutions

Solutions Class 12 Notes: CBSE Chemistry Chapter 1

Electrochemistry Class 12 Notes: CBSE Chemistry Chapter 2
