Answer
Verified
110.7k+ views
Hint: A spring-mass system consists of masses connected to springs. The system is oscillating in simple harmonic motion. In this question, we have to find the change in the total energy when the mass is doubled. For that, we have to find the dependence of the total energy on mass. Using that relation we can find the change in total energy.
Formula used:
$T = \dfrac{{2\pi }}{\omega }$(Where$T$is the time period of oscillation, $2\pi $is constant and$\omega $is the angular velocity of the oscillating particle)
Complete step by step solution:
The total mechanical energy of the spring-mass system is given by,
$E = \dfrac{1}{2}m{\omega ^2}{A^2}$
The time period of oscillation for simple harmonic oscillation is given by,
$T = \dfrac{{2\pi }}{\omega }$
From this equation we get
$\dfrac{T}{{2\pi }} = \omega $
For a spring-mass system, the time constant is,
\[T = 2\pi \sqrt {\dfrac{m}{K}} \] (Where $m$is the mass of the particle and $K$is a constant called spring constant)
From this equation we get
$\dfrac{T}{{2\pi }} = \sqrt {\dfrac{m}{K}} $
Comparing equations and
We get, $\dfrac{1}{\omega } = \sqrt {\dfrac{m}{K}} \Rightarrow \omega = \sqrt {\dfrac{K}{m}} $
Substituting the value of $\omega $in
$E = \dfrac{1}{2}m \times \dfrac{K}{m} \times {A^2}$ $\left( {\because {\omega ^2} = \dfrac{K}{m}} \right)$
The equation will become,
$E = \dfrac{1}{2}K{A^2}$
This means that the total energy of the system does not depend on the mass of the particle.
Therefore, the energy will remain the same even when the mass is doubled.
The answer is Option (D): remains $E$.
Note: In the expression for total energy, mass is given but this does not mean that there is a relation between mass and total energy of the system. We have to substitute for the frequency and check whether there is a relation between the mass and the total energy. Choosing the answer by seeing the options without substituting for the value of frequency might go wrong.
The motions, which are repeated at regular intervals of time, are called periodic or harmonic motions. The simplest form of oscillatory motion is called simple harmonic motion. The Spring-mass system is a typical example of simple harmonic motion. The time taken to repeat a periodic motion is called the time period of harmonic motion.
Formula used:
$T = \dfrac{{2\pi }}{\omega }$(Where$T$is the time period of oscillation, $2\pi $is constant and$\omega $is the angular velocity of the oscillating particle)
Complete step by step solution:
The total mechanical energy of the spring-mass system is given by,
$E = \dfrac{1}{2}m{\omega ^2}{A^2}$
The time period of oscillation for simple harmonic oscillation is given by,
$T = \dfrac{{2\pi }}{\omega }$
From this equation we get
$\dfrac{T}{{2\pi }} = \omega $
For a spring-mass system, the time constant is,
\[T = 2\pi \sqrt {\dfrac{m}{K}} \] (Where $m$is the mass of the particle and $K$is a constant called spring constant)
From this equation we get
$\dfrac{T}{{2\pi }} = \sqrt {\dfrac{m}{K}} $
Comparing equations and
We get, $\dfrac{1}{\omega } = \sqrt {\dfrac{m}{K}} \Rightarrow \omega = \sqrt {\dfrac{K}{m}} $
Substituting the value of $\omega $in
$E = \dfrac{1}{2}m \times \dfrac{K}{m} \times {A^2}$ $\left( {\because {\omega ^2} = \dfrac{K}{m}} \right)$
The equation will become,
$E = \dfrac{1}{2}K{A^2}$
This means that the total energy of the system does not depend on the mass of the particle.
Therefore, the energy will remain the same even when the mass is doubled.
The answer is Option (D): remains $E$.
Note: In the expression for total energy, mass is given but this does not mean that there is a relation between mass and total energy of the system. We have to substitute for the frequency and check whether there is a relation between the mass and the total energy. Choosing the answer by seeing the options without substituting for the value of frequency might go wrong.
The motions, which are repeated at regular intervals of time, are called periodic or harmonic motions. The simplest form of oscillatory motion is called simple harmonic motion. The Spring-mass system is a typical example of simple harmonic motion. The time taken to repeat a periodic motion is called the time period of harmonic motion.
Recently Updated Pages
Write an article on the need and importance of sports class 10 english JEE_Main
Write a composition in approximately 450 500 words class 10 english JEE_Main
Arrange the sentences P Q R between S1 and S5 such class 10 english JEE_Main
If x2 hx 21 0x2 3hx + 35 0h 0 has a common root then class 10 maths JEE_Main
The radius of a sector is 12 cm and the angle is 120circ class 10 maths JEE_Main
For what value of x function fleft x right x4 4x3 + class 10 maths JEE_Main
Other Pages
Electric field due to uniformly charged sphere class 12 physics JEE_Main
In a steady state of heat conduction the temperature class 11 physics JEE_Main
A coil of inductance 020 H is connected in series with class 12 physics JEE_Main
The adjoining diagram shows the spectral energy density class 11 physics JEE_MAIN
Give one chemical test to distinguish between the following class 12 chemistry JEE_Main
Two mirrors one concave and the other convex are placed class 12 physics JEE_Main