
The total number of valence electrons in 4.2g of \[{{N}_{3}}^{-}\]ions are:
A.2.2 \[{{N}_{A}}\]
B.4.2\[{{N}_{A}}\]
C.1.6\[{{N}_{A}}\]
D.3.2\[{{N}_{A}}\]
Answer
233.1k+ views
Hint: Total number of valence electrons in an ion is calculated by using the following formula
Number of valence electrons in an ion = Number of moles of the given ion
$\times$ Number of valence electrons in the given ion $\times$ Avogadro number
Complete step by step answer:
-Given mass of azide ion (\[{{N}_{3}}^{-}\]) is = 4.2g
-We have to calculate the molar mass of azide ion (\[{{N}_{3}}^{-}\]).
-Atomic weight of Nitrogen is 14.
-Number of nitrogen atoms in azide ion (\[{{N}_{3}}^{-}\]) is three.
-Step-1:
So, the molar mass will be\[3\times 14=42\].
Number of moles of azide ion (\[{{N}_{3}}^{-}\]) \[\begin{align}
& =\dfrac{4.2}{42} \\
& =0.1\text{ }moles \\
\end{align}\]
-Step-2:
Number of valence electrons in one nitrogen atom are five.
The number of valence electrons in azide ion (\[{{N}_{3}}^{-}\])
\[\begin{align}
& =(3\times 5)+1 \\
& =16 \\
\end{align}\]
-Substitute the number of moles and number of valence electrons in the following equation to get the number of valence electrons in 4.2g of \[{{N}_{3}}^{-}\]ions.
Number of valence electrons in an ion = Number of moles of the given ion
× Number of valence electrons in the given ion ×Avogadro number
\[\begin{align}
& \text{ = 0}\text{.1 }\times \text{ 16 }\times \text{ }{{\text{N}}_{\text{A}}} \\
& \text{ = 1}\text{.6 }{{\text{N}}_{\text{A}}}\text{ } \\
\end{align}\]
So, the correct option is C.
Note: Don’t be confused with the words valence electrons and number of moles.
Valence electron means the electron which is present in outer most orbit is called valence electron.
Number moles is the ratio of given weight of the atom or ion and atomic weight of the atom or ion.
Number of valence electrons in an ion = Number of moles of the given ion
$\times$ Number of valence electrons in the given ion $\times$ Avogadro number
Complete step by step answer:
-Given mass of azide ion (\[{{N}_{3}}^{-}\]) is = 4.2g
-We have to calculate the molar mass of azide ion (\[{{N}_{3}}^{-}\]).
-Atomic weight of Nitrogen is 14.
-Number of nitrogen atoms in azide ion (\[{{N}_{3}}^{-}\]) is three.
-Step-1:
So, the molar mass will be\[3\times 14=42\].
Number of moles of azide ion (\[{{N}_{3}}^{-}\]) \[\begin{align}
& =\dfrac{4.2}{42} \\
& =0.1\text{ }moles \\
\end{align}\]
-Step-2:
Number of valence electrons in one nitrogen atom are five.
The number of valence electrons in azide ion (\[{{N}_{3}}^{-}\])
\[\begin{align}
& =(3\times 5)+1 \\
& =16 \\
\end{align}\]
-Substitute the number of moles and number of valence electrons in the following equation to get the number of valence electrons in 4.2g of \[{{N}_{3}}^{-}\]ions.
Number of valence electrons in an ion = Number of moles of the given ion
× Number of valence electrons in the given ion ×Avogadro number
\[\begin{align}
& \text{ = 0}\text{.1 }\times \text{ 16 }\times \text{ }{{\text{N}}_{\text{A}}} \\
& \text{ = 1}\text{.6 }{{\text{N}}_{\text{A}}}\text{ } \\
\end{align}\]
So, the correct option is C.
Note: Don’t be confused with the words valence electrons and number of moles.
Valence electron means the electron which is present in outer most orbit is called valence electron.
Number moles is the ratio of given weight of the atom or ion and atomic weight of the atom or ion.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Hydrocarbons Class 11 Chemistry Chapter 9 CBSE Notes - 2025-26

Thermodynamics Class 11 Chemistry Chapter 5 CBSE Notes - 2025-26

Equilibrium Class 11 Chemistry Chapter 6 CBSE Notes - 2025-26

Organic Chemistry Some Basic Principles And Techniques Class 11 Chemistry Chapter 8 CBSE Notes - 2025-26

NCERT Solutions For Class 11 Chemistry Chapter 7 Redox Reactions (2025-26)

