
The value of the gas constant $\left( R \right)$ calculated from the perfect gas equation is $8.32{\text{ Joule/gm mol K}}$ , whereas its value calculated from the knowledge of ${{\text{C}}_{\text{P}}}$ and ${{\text{C}}_{\text{V}}}$ of the gas is ${\text{1}}{\text{.98 cal/gm mol K}}$ . What is the value of $J$ from this data?
A. $4.16{\text{ J/cal}}$
B. $4.18{\text{ J/cal}}$
C. $4.20{\text{ J/cal}}$
D. $4.22{\text{ J/cal}}$
Answer
133.2k+ views
Hint:${{\text{C}}_{\text{P}}}$ is the molar heat capacity of a gas at constant pressure and ${{\text{C}}_{\text{V}}}$ is the molar heat capacity of the gas at constant volume. For an ideal gas, the relation between ${{\text{C}}_{\text{P}}}$ and ${{\text{C}}_{\text{V}}}$ is given by \[{{\text{C}}_{\text{P}}} - {{\text{C}}_{\text{V}}} = R\] .
Formula used:
For an ideal gas, the relation between ${{\text{C}}_{\text{P}}}$ and ${{\text{C}}_{\text{V}}}$ is given by
\[{{\text{C}}_{\text{P}}} - {{\text{C}}_{\text{V}}} = R\] .
Complete answer:
For an ideal gas, the relation between ${{\text{C}}_{\text{P}}}$ and ${{\text{C}}_{\text{V}}}$ is given by:
\[{{\text{C}}_{\text{P}}} - {{\text{C}}_{\text{V}}} = R\] …(1)
Here, $R$ is the universal gas constant having a value of $8.314{\text{ J}}{{\text{K}}^{ - 1}}{\text{mo}}{{\text{l}}^{ - 1}}$.
However, in the given question, we are provided this value of $R$ in the unit of calories.
Hence, dividing the right-hand side of the relation in equation (1) by 1 Joule to get it in the form of calories,
\[{{\text{C}}_{\text{P}}} - {{\text{C}}_{\text{V}}} = \dfrac{R}{J}\]
Now, the given value of \[{{\text{C}}_{\text{P}}} - {{\text{C}}_{\text{V}}}\] is ${\text{1}}{\text{.98 cal/gm mol K}}$ .
Thus, substituting all the values, we get:
${\text{1}}{\text{.98 cal/gm mol K}} = \dfrac{{8.32{\text{ Joule/gm mol K}}}}{J}$
On simplifying further, we get:
$J = \dfrac{{8.32}}{{1.98}} = 4.20{\text{ J/cal}}$
Thus, the correct option is C.
Note: To solve the given question, just remember the relation between ${{\text{C}}_{\text{P}}}$ and ${{\text{C}}_{\text{V}}}$ which is given by \[{{\text{C}}_{\text{P}}} - {{\text{C}}_{\text{V}}} = R\] . Note that the value of $R$ provided in the question using this formula is in units of calories while using the relation, we obtain it in units of joules. Hence, perform basic maths and convert the relation in calories to get the required answer.
Formula used:
For an ideal gas, the relation between ${{\text{C}}_{\text{P}}}$ and ${{\text{C}}_{\text{V}}}$ is given by
\[{{\text{C}}_{\text{P}}} - {{\text{C}}_{\text{V}}} = R\] .
Complete answer:
For an ideal gas, the relation between ${{\text{C}}_{\text{P}}}$ and ${{\text{C}}_{\text{V}}}$ is given by:
\[{{\text{C}}_{\text{P}}} - {{\text{C}}_{\text{V}}} = R\] …(1)
Here, $R$ is the universal gas constant having a value of $8.314{\text{ J}}{{\text{K}}^{ - 1}}{\text{mo}}{{\text{l}}^{ - 1}}$.
However, in the given question, we are provided this value of $R$ in the unit of calories.
Hence, dividing the right-hand side of the relation in equation (1) by 1 Joule to get it in the form of calories,
\[{{\text{C}}_{\text{P}}} - {{\text{C}}_{\text{V}}} = \dfrac{R}{J}\]
Now, the given value of \[{{\text{C}}_{\text{P}}} - {{\text{C}}_{\text{V}}}\] is ${\text{1}}{\text{.98 cal/gm mol K}}$ .
Thus, substituting all the values, we get:
${\text{1}}{\text{.98 cal/gm mol K}} = \dfrac{{8.32{\text{ Joule/gm mol K}}}}{J}$
On simplifying further, we get:
$J = \dfrac{{8.32}}{{1.98}} = 4.20{\text{ J/cal}}$
Thus, the correct option is C.
Note: To solve the given question, just remember the relation between ${{\text{C}}_{\text{P}}}$ and ${{\text{C}}_{\text{V}}}$ which is given by \[{{\text{C}}_{\text{P}}} - {{\text{C}}_{\text{V}}} = R\] . Note that the value of $R$ provided in the question using this formula is in units of calories while using the relation, we obtain it in units of joules. Hence, perform basic maths and convert the relation in calories to get the required answer.
Recently Updated Pages
Sign up for JEE Main 2025 Live Classes - Vedantu

JEE Main Books 2023-24: Best JEE Main Books for Physics, Chemistry and Maths

JEE Main 2023 April 13 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 11 Shift 2 Question Paper with Answer Key

JEE Main 2023 April 10 Shift 2 Question Paper with Answer Key

JEE Main 2023 (April 11th Shift 2) Physics Question Paper with Answer Key

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Class 11 JEE Main Physics Mock Test 2025

Current Loop as Magnetic Dipole and Its Derivation for JEE

Inertial and Non-Inertial Frame of Reference - JEE Important Topic

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Units and Measurements Class 11 Notes: CBSE Physics Chapter 1

NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line

Important Questions for CBSE Class 11 Physics Chapter 1 - Units and Measurement

Motion In A Plane: Line Class 11 Notes: CBSE Physics Chapter 3

Waves Class 11 Notes: CBSE Physics Chapter 14
