Answer
Verified
110.7k+ views
Hint: The impedance of the circuit is determined by using the impedance of the circuit formula, by using this formula and also by using the values of the inductive reactance, capacitive reactance and the resistance values, then the impedance in the circuit can be determined.
Formula used:
The impedance of the circuit is given by,
$Z = \sqrt {{R^2} + {{\left( {{X_L} - {X_C}} \right)}^2}} $
Where, $Z$ is the impedance of the circuit, ${X_L}$ is the inductive reactance of the circuit, ${X_C}$ is the capacitive reactance of the circuit and $R$ is the resistance of the circuit.
Complete step by step solution:
Given that,
The inductive reactance of the circuit is, ${X_L} = 8\,\Omega $
The capacitive reactance of the circuit is, ${X_C} = 6\,\Omega $
The resistance of the circuit is, $R = 10\,\Omega $
Now,
The impedance of the circuit is given by,
$Z = \sqrt {{R^2} + {{\left( {{X_L} - {X_C}} \right)}^2}} \,................\left( 1 \right)$
By substituting the inductive reactance of the circuit, the capacitive reactance of the circuit and the resistance of the circuit in the above equation (1), then the above equation (1) is written as,
$Z = \sqrt {{{10}^2} + {{\left( {8 - 6} \right)}^2}} $
By subtracting the terms in the above equation, then the above equation is written as,
$Z = \sqrt {{{10}^2} + {2^2}} $
By squaring the terms inside the square root in the above equation, then the above equation is written as,
$Z = \sqrt {100 + 4} $
By adding the terms inside the square root in the above equation, then the above equation is written as,
$Z = \sqrt {104} $
By taking the square root in the above equation, then the above equation is written as,
$Z = 10.19\,\Omega $
Then the above equation is approximately written as,
$Z \simeq 10.2\,\Omega $
Hence, the option (A) is the correct answer.
Note: The impedance of the circuit is dependent only on the resistance of the circuit, the inductive reactance of the circuit, the capacitive reactance of the circuit. The impedance is also the form of the resistance and it is the measure of the overall opposition of the current in the circuit.
Formula used:
The impedance of the circuit is given by,
$Z = \sqrt {{R^2} + {{\left( {{X_L} - {X_C}} \right)}^2}} $
Where, $Z$ is the impedance of the circuit, ${X_L}$ is the inductive reactance of the circuit, ${X_C}$ is the capacitive reactance of the circuit and $R$ is the resistance of the circuit.
Complete step by step solution:
Given that,
The inductive reactance of the circuit is, ${X_L} = 8\,\Omega $
The capacitive reactance of the circuit is, ${X_C} = 6\,\Omega $
The resistance of the circuit is, $R = 10\,\Omega $
Now,
The impedance of the circuit is given by,
$Z = \sqrt {{R^2} + {{\left( {{X_L} - {X_C}} \right)}^2}} \,................\left( 1 \right)$
By substituting the inductive reactance of the circuit, the capacitive reactance of the circuit and the resistance of the circuit in the above equation (1), then the above equation (1) is written as,
$Z = \sqrt {{{10}^2} + {{\left( {8 - 6} \right)}^2}} $
By subtracting the terms in the above equation, then the above equation is written as,
$Z = \sqrt {{{10}^2} + {2^2}} $
By squaring the terms inside the square root in the above equation, then the above equation is written as,
$Z = \sqrt {100 + 4} $
By adding the terms inside the square root in the above equation, then the above equation is written as,
$Z = \sqrt {104} $
By taking the square root in the above equation, then the above equation is written as,
$Z = 10.19\,\Omega $
Then the above equation is approximately written as,
$Z \simeq 10.2\,\Omega $
Hence, the option (A) is the correct answer.
Note: The impedance of the circuit is dependent only on the resistance of the circuit, the inductive reactance of the circuit, the capacitive reactance of the circuit. The impedance is also the form of the resistance and it is the measure of the overall opposition of the current in the circuit.
Recently Updated Pages
Write an article on the need and importance of sports class 10 english JEE_Main
Write a composition in approximately 450 500 words class 10 english JEE_Main
Arrange the sentences P Q R between S1 and S5 such class 10 english JEE_Main
If x2 hx 21 0x2 3hx + 35 0h 0 has a common root then class 10 maths JEE_Main
The radius of a sector is 12 cm and the angle is 120circ class 10 maths JEE_Main
For what value of x function fleft x right x4 4x3 + class 10 maths JEE_Main
Other Pages
Electric field due to uniformly charged sphere class 12 physics JEE_Main
If a wire of resistance R is stretched to double of class 12 physics JEE_Main
In Searles apparatus when the experimental wire is class 11 physics JEE_Main
The energy stored is a condenser is in the form of class 12 physics JEE_Main
Excluding stoppages the speed of a bus is 54 kmph and class 11 maths JEE_Main