
The volume of mole of a perfect gas at NTP is:
A) $22.4$ $litres$
B) $2.24$ $litres$
C) $100$ $litres$
D) None of these
Answer
233.1k+ views
Hint: In chemistry the mole is an amount unit. One mole of substance is defined as the amount of substance containing the same number of discrete atoms as the number of atoms in a sample of pure $12C$ weighing exactly $12 g$. Experimentally it was determined that one mole of a substance comprises $6.02214179 \times {10^{23}}$ atoms. This number is known as Avagadro’s number.
Complete step by step answer:
We know that the equation for state of an ideal gas is given by,
$PV = nRT$
Where. P is absolute pressure of the gas, V is the volume of gas, T is the temperature of the gas in kelvin. N is the number of moles of the gas and R is the universal gas constant which has a value of $8.314 J/mol-K$. Hence, volume of an ideal gas can be determined by the following equation
$V = \dfrac{{nRT}}{P}$………….(1)
We know that. At N.T.P, temperature is $T$ = $293.15 K \left( {{{20}^o}C} \right)$ and and pressure is $P$ = $1 atm$ = $101.325 kPa$, putting these values along with the value of universal gas constant ($R = 8.314 J/mol-K$) in equation (1), for one mole of ideal gas (n = 1) we get,
$V = \dfrac{{1 \times 8.314 \times 293.15}}{{101.325}}$
$V = 24.054 l$
Hence, at N.T.P the volume of an ideal gas is $24.05$ $litres$. Therefore, we can say that none of the given options are in agreement with our solution.
Hence option D is the correct answer option.
Note: There is a difference between N.T.P and S.T.P and it is mentioned below.
S.T.P stands for standard temperature and pressure. At S.T.P the temperature is $T = {0^o}C$ and pressure is $P = 100 kPa$.
N.T.P stands for normal temperature and pressure. At N.T.P the temperature is $T = {20^o}C$ and pressure is $P =101.325 kPa$.
Complete step by step answer:
We know that the equation for state of an ideal gas is given by,
$PV = nRT$
Where. P is absolute pressure of the gas, V is the volume of gas, T is the temperature of the gas in kelvin. N is the number of moles of the gas and R is the universal gas constant which has a value of $8.314 J/mol-K$. Hence, volume of an ideal gas can be determined by the following equation
$V = \dfrac{{nRT}}{P}$………….(1)
We know that. At N.T.P, temperature is $T$ = $293.15 K \left( {{{20}^o}C} \right)$ and and pressure is $P$ = $1 atm$ = $101.325 kPa$, putting these values along with the value of universal gas constant ($R = 8.314 J/mol-K$) in equation (1), for one mole of ideal gas (n = 1) we get,
$V = \dfrac{{1 \times 8.314 \times 293.15}}{{101.325}}$
$V = 24.054 l$
Hence, at N.T.P the volume of an ideal gas is $24.05$ $litres$. Therefore, we can say that none of the given options are in agreement with our solution.
Hence option D is the correct answer option.
Note: There is a difference between N.T.P and S.T.P and it is mentioned below.
S.T.P stands for standard temperature and pressure. At S.T.P the temperature is $T = {0^o}C$ and pressure is $P = 100 kPa$.
N.T.P stands for normal temperature and pressure. At N.T.P the temperature is $T = {20^o}C$ and pressure is $P =101.325 kPa$.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding Uniform Acceleration in Physics

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Laws of Motion Class 11 Physics Chapter 4 CBSE Notes - 2025-26

Waves Class 11 Physics Chapter 14 CBSE Notes - 2025-26

Mechanical Properties of Fluids Class 11 Physics Chapter 9 CBSE Notes - 2025-26

Thermodynamics Class 11 Physics Chapter 11 CBSE Notes - 2025-26

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

