The Young’s modulus of the material of a wire is $6 \times {10^{12}}N{m^{ - 2}}$ and there is no transverse in it, then its modulus of rigidity will be:
A) $3 \times {10^{12}}N{m^{ - 2}}$
B) $2 \times {10^{12}}N{m^{ - 2}}$
C) ${10^{12}}N{m^{ - 2}}$
D) $\text{None of the above}$
Answer
Verified
122.7k+ views
Hint: First, consider the relation between young’s modulus and modulus of rigidity of the material of the wire, i.e., $Y = 2\eta (1 + \sigma )$ . As no transverse is there in the wire, we can take $\sigma = 0$ . Now, from the above relation, calculate the modulus of rigidity $\eta$ .
Complete step by step solution:
From the relation between young’s modulus and rigidity modulus, we know that, $Y = 2\eta (1 + \sigma )$ ;
Where
$Y =$ Young’s modulus of the material of the wire,
$\eta =$ modulus of rigidity of the material of the wire,
$\sigma =$ transverse strain of the wire
By the given problem, there is no transverse strain in the wire, so $\sigma = 0$ .
So, we have $Y = 2\eta$ from the above relation.
Here, young’s modulus of the material of the wire is $Y = 6 \times {10^{12}}N{m^{ - 2}}$
Therefore, the value of modulus of rigidity of the material of the wire will be,
$\Rightarrow \eta = \dfrac{Y}{2}$
$\Rightarrow \dfrac{{6 \times {{10}^{12}}}}{2}N{m^{ - 2}}$
$\Rightarrow 3 \times {10^{12}}N{m^{ - 2}}$
The correct solution is (A), $3 \times {10^{12}}N{m^{ - 2}}.$
Additional information:
Young’s modulus is the ratio of longitudinal (tensile or compressive) stress to the longitudinal (tensile or compressive) strain, within elastic limit, with no force applied to prevent the associated lateral change in the dimension.
$Y = \dfrac{{F/A}}{{\Delta l/l}}$
Rigidity modulus or shear modulus is the ratio of shearing stress (tangential stress) to the shearing strain (angle of shear), within the elastic limit.
$\eta = \dfrac{{F/A}}{{\tan \theta }}$
When $\theta$ is very small we have $\tan \theta \approx \theta$-
$\eta = \dfrac{{F/A}}{\theta }$
The relation between the two elastic constants is $Y = 2\eta (1 + \sigma )$ .
Note: Here, transverse strain $(\sigma )$ is the ratio of the change in diameter of a circular bar of a material to its diameter because of deformation in the longitudinal direction. It is also known as lateral strain. This quantity is dimensionless because of being a ratio between two quantities of the same dimension.
Complete step by step solution:
From the relation between young’s modulus and rigidity modulus, we know that, $Y = 2\eta (1 + \sigma )$ ;
Where
$Y =$ Young’s modulus of the material of the wire,
$\eta =$ modulus of rigidity of the material of the wire,
$\sigma =$ transverse strain of the wire
By the given problem, there is no transverse strain in the wire, so $\sigma = 0$ .
So, we have $Y = 2\eta$ from the above relation.
Here, young’s modulus of the material of the wire is $Y = 6 \times {10^{12}}N{m^{ - 2}}$
Therefore, the value of modulus of rigidity of the material of the wire will be,
$\Rightarrow \eta = \dfrac{Y}{2}$
$\Rightarrow \dfrac{{6 \times {{10}^{12}}}}{2}N{m^{ - 2}}$
$\Rightarrow 3 \times {10^{12}}N{m^{ - 2}}$
The correct solution is (A), $3 \times {10^{12}}N{m^{ - 2}}.$
Additional information:
Young’s modulus is the ratio of longitudinal (tensile or compressive) stress to the longitudinal (tensile or compressive) strain, within elastic limit, with no force applied to prevent the associated lateral change in the dimension.
$Y = \dfrac{{F/A}}{{\Delta l/l}}$
Rigidity modulus or shear modulus is the ratio of shearing stress (tangential stress) to the shearing strain (angle of shear), within the elastic limit.
$\eta = \dfrac{{F/A}}{{\tan \theta }}$
When $\theta$ is very small we have $\tan \theta \approx \theta$-
$\eta = \dfrac{{F/A}}{\theta }$
The relation between the two elastic constants is $Y = 2\eta (1 + \sigma )$ .
Note: Here, transverse strain $(\sigma )$ is the ratio of the change in diameter of a circular bar of a material to its diameter because of deformation in the longitudinal direction. It is also known as lateral strain. This quantity is dimensionless because of being a ratio between two quantities of the same dimension.
Recently Updated Pages
The ratio of the diameters of two metallic rods of class 11 physics JEE_Main
What is the difference between Conduction and conv class 11 physics JEE_Main
Mark the correct statements about the friction between class 11 physics JEE_Main
Find the acceleration of the wedge towards the right class 11 physics JEE_Main
A standing wave is formed by the superposition of two class 11 physics JEE_Main
Derive an expression for work done by the gas in an class 11 physics JEE_Main
Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility & More
JEE Main Login 2045: Step-by-Step Instructions and Details
Class 11 JEE Main Physics Mock Test 2025
JEE Main Chemistry Question Paper with Answer Keys and Solutions
JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking
JEE Main 2023 January 24 Shift 2 Question Paper with Answer Keys & Solutions
Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs
NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements
NCERT Solutions for Class 11 Physics Chapter 9 Mechanical Properties of Fluids
Units and Measurements Class 11 Notes: CBSE Physics Chapter 1
JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More
NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line