Answer
Verified
108.9k+ views
Hint: We will first consider the given data and then we will find the factors of the given values 75 and 45. After this we need to find the maximum number of flowers contained in one bouquet by finding the highest common factor obtained from the factors of 75 and 45. Next to find the number of flowers in the bouquet can be found by adding the factors of highest common factors.
Complete step by step solution:
First consider the number of roses that is 75 and number of lilies that is 45.
Now, we will find the factors of number 75
We get,
Factors of \[75 = 3 \times 5 \times 5\]
Next, we will find the factors of the number 45,
Thus, we have,
\[ \Rightarrow 45 = 3 \times 3 \times 5\]
Now, to determine the maximum number of flowers contained in one bouquet, we are required to find the highest common factor (H.C.F) from these two factors.
Thus, the common factors from both the numbers are 3 and 5
Thus, we get the H.C.F. as,
\[ \Rightarrow 3 \times 5 = 15\]
Hence, the numbers of flowers contained in one bouquet are \[15\].
And the numbers of flowers in the bouquets can be found by adding 3 and 5
Thus, we get,
\[ \Rightarrow 3 + 5 = 8\].
Which means the number of rose flowers in the bouquets is 5 and the number of lily flowers in the bouquets is 3.
Note: Do not think to find out the LCM, if we find the LCM then we get the minimum number of flowers, so that answer can be wrong. To find the maximum number of flowers, the highest common factor has to be calculated. To find the total numbers just add the common factors obtained from the factorization.
Complete step by step solution:
First consider the number of roses that is 75 and number of lilies that is 45.
Now, we will find the factors of number 75
We get,
Factors of \[75 = 3 \times 5 \times 5\]
Next, we will find the factors of the number 45,
Thus, we have,
\[ \Rightarrow 45 = 3 \times 3 \times 5\]
Now, to determine the maximum number of flowers contained in one bouquet, we are required to find the highest common factor (H.C.F) from these two factors.
Thus, the common factors from both the numbers are 3 and 5
Thus, we get the H.C.F. as,
\[ \Rightarrow 3 \times 5 = 15\]
Hence, the numbers of flowers contained in one bouquet are \[15\].
And the numbers of flowers in the bouquets can be found by adding 3 and 5
Thus, we get,
\[ \Rightarrow 3 + 5 = 8\].
Which means the number of rose flowers in the bouquets is 5 and the number of lily flowers in the bouquets is 3.
Note: Do not think to find out the LCM, if we find the LCM then we get the minimum number of flowers, so that answer can be wrong. To find the maximum number of flowers, the highest common factor has to be calculated. To find the total numbers just add the common factors obtained from the factorization.
Recently Updated Pages
If x2 hx 21 0x2 3hx + 35 0h 0 has a common root then class 10 maths JEE_Main
The radius of a sector is 12 cm and the angle is 120circ class 10 maths JEE_Main
For what value of x function fleft x right x4 4x3 + class 10 maths JEE_Main
What is the area under the curve yx+x1 betweenx0 and class 10 maths JEE_Main
The volume of a sphere is dfrac43pi r3 cubic units class 10 maths JEE_Main
Which of the following is a good conductor of electricity class 10 chemistry JEE_Main