
Three identical particles each of mass $m$ are placed at the corners of the equilateral triangle at side $a$. Find the gravitational force exerted on one body due to the other two.
Answer
133.8k+ views
Hint: We have an equilateral triangle whose all angles are equal to $60^\circ $ . We have to use the formula of gravitational force which is equal to $\overrightarrow F = G\dfrac{{Mm}}{{{r^2}}}$. After that for net force add both the forces which act on it due to both sides.
Complete step by step solution:
We have an equilateral triangle whose all sides are equal and angles are of $60^\circ $. Now let $L = a$ be the side of a triangle.

Here all the particles are of the same mass as $m$.
We will use Newton's laws to solve this question. Newton's law of universal gravitation says that every particle attracts every other particle in the universe with a force that is directly proportional to the product of their masses and inversely proportional to the square of the distance between their centers. Therefore,
$\overrightarrow F = G\dfrac{{Mm}}{{{r^2}}}$
Now put the values, calculate magnitude of force due to particle B, we get
${\overrightarrow F _1} = G\dfrac{{{m^2}}}{{{r^2}}}$
Now calculate magnitude of force due to particle C, we get
${\overrightarrow F _2} = G\dfrac{{{m^2}}}{{{r^2}}}$
Now, we are given that both the forces are at $60^\circ $ . Therefore net force is equal to
$\overrightarrow {{F_{net}}} = \overrightarrow {{F_1}} + \overrightarrow {{F_2}} $
And the magnitude of this net force will be
$ \Rightarrow \sqrt {{F^2}_1 + {F_2}^2 + 2{F_1}{F_2}\cos 60°} $
After putting the value of $\cos 60$ , we get
$ \Rightarrow \sqrt {{F^2} + {F^2} + 2{F^2} \times \dfrac{1}{2}}$ (since $\cos 60° = \dfrac{1}{2}$ )
$ \Rightarrow \sqrt {3{F^2}} $
Hence, we get the net force equal to
${F_{net}} = \sqrt 3 F$
And lastly put value of $F$ to get the final answer
${F_{net}} = \sqrt 3 G\dfrac{{{m^2}}}{{{r^2}}}$
This is the value asked in the question.
Note: Always remember about the units of quantities. Here, the mass of all the particles is the same so refer to them with the same name and also remember that force is a vector quantity so direction matters.
Complete step by step solution:
We have an equilateral triangle whose all sides are equal and angles are of $60^\circ $. Now let $L = a$ be the side of a triangle.

Here all the particles are of the same mass as $m$.
We will use Newton's laws to solve this question. Newton's law of universal gravitation says that every particle attracts every other particle in the universe with a force that is directly proportional to the product of their masses and inversely proportional to the square of the distance between their centers. Therefore,
$\overrightarrow F = G\dfrac{{Mm}}{{{r^2}}}$
Now put the values, calculate magnitude of force due to particle B, we get
${\overrightarrow F _1} = G\dfrac{{{m^2}}}{{{r^2}}}$
Now calculate magnitude of force due to particle C, we get
${\overrightarrow F _2} = G\dfrac{{{m^2}}}{{{r^2}}}$
Now, we are given that both the forces are at $60^\circ $ . Therefore net force is equal to
$\overrightarrow {{F_{net}}} = \overrightarrow {{F_1}} + \overrightarrow {{F_2}} $
And the magnitude of this net force will be
$ \Rightarrow \sqrt {{F^2}_1 + {F_2}^2 + 2{F_1}{F_2}\cos 60°} $
After putting the value of $\cos 60$ , we get
$ \Rightarrow \sqrt {{F^2} + {F^2} + 2{F^2} \times \dfrac{1}{2}}$ (since $\cos 60° = \dfrac{1}{2}$ )
$ \Rightarrow \sqrt {3{F^2}} $
Hence, we get the net force equal to
${F_{net}} = \sqrt 3 F$
And lastly put value of $F$ to get the final answer
${F_{net}} = \sqrt 3 G\dfrac{{{m^2}}}{{{r^2}}}$
This is the value asked in the question.
Note: Always remember about the units of quantities. Here, the mass of all the particles is the same so refer to them with the same name and also remember that force is a vector quantity so direction matters.
Recently Updated Pages
JEE Main 2025 Session 2 Form Correction (Closed) – What Can Be Edited

Sign up for JEE Main 2025 Live Classes - Vedantu

JEE Main Books 2023-24: Best JEE Main Books for Physics, Chemistry and Maths

JEE Main 2023 April 13 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 11 Shift 2 Question Paper with Answer Key

JEE Main 2023 April 10 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Class 11 JEE Main Physics Mock Test 2025

Current Loop as Magnetic Dipole and Its Derivation for JEE

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Units and Measurements Class 11 Notes: CBSE Physics Chapter 1

Important Questions for CBSE Class 11 Physics Chapter 1 - Units and Measurement

NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line

Motion In A Plane: Line Class 11 Notes: CBSE Physics Chapter 3

Waves Class 11 Notes: CBSE Physics Chapter 14
