
Two balls P and Q are at opposite ends of the diameter of a frictionless horizontal circular groove. P is projected along the groove and at the end of \[T\]second, it strikes ball Q. Let difference in their final velocities be proportional to the initial velocity of ball P and coefficient of proportionally is “e” then second strike occurs at:

A) $\dfrac{{2T}}{e}$
B) $\dfrac{e}{{2T}}$
C) $2eT$
D) $Te$
Answer
232.8k+ views
Hint: In this solution, we will first determine the velocity of the second ball Q when struck by the ball P. The time between the collisions can be determined by the time period of revolution of an object in a circular orbit.
Complete step by step answer:
We’ve been told that ball P is projected along the grove and at the end of “T” seconds, it collides with ball Q. Let us assume that the ball P is moving with velocity $u$. Then the velocity of the ball will be equal to the ratio of the circumference of the circle and the time it takes to cover around which will be $2T$.
$u = \dfrac{{2\pi R}}{{2T}}$
Now when the ball P collides with ball Q after $T$ seconds, it will lose some velocity, and ball Q will gain some velocity. We’ve been told that the difference of these velocities is proportional to the difference in the velocity and the coefficient of proportionality is $e$. So, assuming the new velocity of ball P as $v$ and of ball Q as $v'$, we can write
$v - v' = eu$
Now when the balls collide, ball Q will be moving with a velocity with respect to the ball P. For them to collide again, they have to cover a distance equal to the circumference of the circle (as ball Q is faster) and they will have a relative velocity of $v - v'$. Hence the time taken in this process will be
$t = \dfrac{{2\pi R}}{{v - v'}}$
Since $v - v' = eu$, we can write
$t = \dfrac{{2\pi R}}{{eu}}$ and as $u = \dfrac{{2\pi R}}{{2T}}$, we can write
$t = \dfrac{{2\pi R \times T}}{{e(2\pi R)}}$
$ \Rightarrow t = \dfrac{{2T}}{e}$ which corresponds to option (A).
Note: While calculating the time taken by the second collision, we must realize that the ball Q will move faster than ball P. To further simplify the problem, we should treat them as one relative object that has to cover a distance equal to the circumference of the circle while travelling with a relative velocity that is equal to the difference of their velocities.
Complete step by step answer:
We’ve been told that ball P is projected along the grove and at the end of “T” seconds, it collides with ball Q. Let us assume that the ball P is moving with velocity $u$. Then the velocity of the ball will be equal to the ratio of the circumference of the circle and the time it takes to cover around which will be $2T$.
$u = \dfrac{{2\pi R}}{{2T}}$
Now when the ball P collides with ball Q after $T$ seconds, it will lose some velocity, and ball Q will gain some velocity. We’ve been told that the difference of these velocities is proportional to the difference in the velocity and the coefficient of proportionality is $e$. So, assuming the new velocity of ball P as $v$ and of ball Q as $v'$, we can write
$v - v' = eu$
Now when the balls collide, ball Q will be moving with a velocity with respect to the ball P. For them to collide again, they have to cover a distance equal to the circumference of the circle (as ball Q is faster) and they will have a relative velocity of $v - v'$. Hence the time taken in this process will be
$t = \dfrac{{2\pi R}}{{v - v'}}$
Since $v - v' = eu$, we can write
$t = \dfrac{{2\pi R}}{{eu}}$ and as $u = \dfrac{{2\pi R}}{{2T}}$, we can write
$t = \dfrac{{2\pi R \times T}}{{e(2\pi R)}}$
$ \Rightarrow t = \dfrac{{2T}}{e}$ which corresponds to option (A).
Note: While calculating the time taken by the second collision, we must realize that the ball Q will move faster than ball P. To further simplify the problem, we should treat them as one relative object that has to cover a distance equal to the circumference of the circle while travelling with a relative velocity that is equal to the difference of their velocities.
Recently Updated Pages
Circuit Switching vs Packet Switching: Key Differences Explained

Dimensions of Pressure in Physics: Formula, Derivation & SI Unit

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Laws of Motion Class 11 Physics Chapter 4 CBSE Notes - 2025-26

Waves Class 11 Physics Chapter 14 CBSE Notes - 2025-26

Mechanical Properties of Fluids Class 11 Physics Chapter 9 CBSE Notes - 2025-26

Thermodynamics Class 11 Physics Chapter 11 CBSE Notes - 2025-26

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

