Answer
Verified
110.4k+ views
Hint: To solve this question, we need to use the formula for the equivalent capacitance in a parallel combination. Then we have to use the basic formula of the capacitance to calculate the total charge supplied by the battery. Using the same formula for each of the individual capacitances, we can calculate the charge on each capacitor.
Formula used: The formulae used for solving this question are given by
$C = {C_1} + {C_2} + {C_3} + ........$, here $C$ is the equivalent capacitance for the parallel combination of the capacitances ${C_1}$, ${C_2}$, ${C_3}$,….
$Q = CV$, here $Q$ is the charge stored by a capacitor of capacitance $C$ at the voltage of $V$.
Complete step-by-step solution:
We know that the equivalent capacitance of a combination of capacitors connected in parallel is given by
$C = {C_1} + {C_2}$
According to the question, the capacitors of capacitances \[2\mu F\] and \[4\mu F\] are connected in parallel. Therefore we substitute ${C_1} = 2\mu F$ and ${C_2} = 4\mu F$ in ….(1) to get the equivalent capacitance of the given combination as
$C = 2\mu F + 4\mu F$
$ \Rightarrow C = 6\mu F$.............(2)
So the equivalent capacity of the combination is equal to $6\mu F$.
Now, this combination is connected across a $9{\text{V}}$ battery. We know that the potential difference across each element connected in parallel is the same and is equal to the emf of the battery, so the potential difference across each of the capacitors is equal to $9{\text{V}}$.
Now, we know that the charge stored by a capacitor is given by
$Q = CV$..............(3)
Since the emf of the battery is given as $9{\text{V}}$, so we substitute $V = 9{\text{V}}$ above to get
$Q = 9C$
Substituting (2) above, we get
$Q = 9 \times 6\mu C$
$ \Rightarrow Q = 54\mu C$..............(4)
So the total charge supplied by the battery is equal to $54\mu C$.
Now, let ${Q_1}$ be the charge on the \[2\mu F\] capacitor, and ${Q_2}$ be the charge on the \[4\mu F\] capacitor.
From (3) we have
$Q = CV$
$ \Rightarrow V = \dfrac{Q}{C}$
Since the voltage across each capacitor is the same, so we have
$\dfrac{{{Q_1}}}{{{C_1}}} = \dfrac{{{Q_2}}}{{{C_2}}}$
Substituting ${C_1} = 2\mu F$ and ${C_2} = 4\mu F$, we have
$\dfrac{{{Q_1}}}{2} = \dfrac{{{Q_2}}}{4}$
$ \Rightarrow {Q_2} = 2{Q_1}$ ………………………….(5)
Now, from the conservation of charge, the total charge on both the capacitors is equal to the charge supplied by the battery. So we have
${Q_1} + {Q_2} = Q$
Substituting (4) and (5) in the above equation, we have
${Q_1} + 2{Q_1} = 54\mu C$
$ \Rightarrow 3{Q_1} = 54\mu C$
Dividing by $3$ both sides, we get
\[{Q_1} = 18\mu C\]..............................(6)
Putting (6) in (5) we get
${Q_2} = 2 \times 18\mu C$
$ \Rightarrow {Q_2} = 36\mu C$
Thus, the charge on the \[2\mu F\] capacitor is equal to $18\mu C$, and the charge on the \[4\mu F\] capacitor is equal to $36\mu C$.
Note: We should not use the inverse relation which is used for calculating the equivalent resistance of a parallel combination. The capacitances are added in a parallel combination.
Formula used: The formulae used for solving this question are given by
$C = {C_1} + {C_2} + {C_3} + ........$, here $C$ is the equivalent capacitance for the parallel combination of the capacitances ${C_1}$, ${C_2}$, ${C_3}$,….
$Q = CV$, here $Q$ is the charge stored by a capacitor of capacitance $C$ at the voltage of $V$.
Complete step-by-step solution:
We know that the equivalent capacitance of a combination of capacitors connected in parallel is given by
$C = {C_1} + {C_2}$
According to the question, the capacitors of capacitances \[2\mu F\] and \[4\mu F\] are connected in parallel. Therefore we substitute ${C_1} = 2\mu F$ and ${C_2} = 4\mu F$ in ….(1) to get the equivalent capacitance of the given combination as
$C = 2\mu F + 4\mu F$
$ \Rightarrow C = 6\mu F$.............(2)
So the equivalent capacity of the combination is equal to $6\mu F$.
Now, this combination is connected across a $9{\text{V}}$ battery. We know that the potential difference across each element connected in parallel is the same and is equal to the emf of the battery, so the potential difference across each of the capacitors is equal to $9{\text{V}}$.
Now, we know that the charge stored by a capacitor is given by
$Q = CV$..............(3)
Since the emf of the battery is given as $9{\text{V}}$, so we substitute $V = 9{\text{V}}$ above to get
$Q = 9C$
Substituting (2) above, we get
$Q = 9 \times 6\mu C$
$ \Rightarrow Q = 54\mu C$..............(4)
So the total charge supplied by the battery is equal to $54\mu C$.
Now, let ${Q_1}$ be the charge on the \[2\mu F\] capacitor, and ${Q_2}$ be the charge on the \[4\mu F\] capacitor.
From (3) we have
$Q = CV$
$ \Rightarrow V = \dfrac{Q}{C}$
Since the voltage across each capacitor is the same, so we have
$\dfrac{{{Q_1}}}{{{C_1}}} = \dfrac{{{Q_2}}}{{{C_2}}}$
Substituting ${C_1} = 2\mu F$ and ${C_2} = 4\mu F$, we have
$\dfrac{{{Q_1}}}{2} = \dfrac{{{Q_2}}}{4}$
$ \Rightarrow {Q_2} = 2{Q_1}$ ………………………….(5)
Now, from the conservation of charge, the total charge on both the capacitors is equal to the charge supplied by the battery. So we have
${Q_1} + {Q_2} = Q$
Substituting (4) and (5) in the above equation, we have
${Q_1} + 2{Q_1} = 54\mu C$
$ \Rightarrow 3{Q_1} = 54\mu C$
Dividing by $3$ both sides, we get
\[{Q_1} = 18\mu C\]..............................(6)
Putting (6) in (5) we get
${Q_2} = 2 \times 18\mu C$
$ \Rightarrow {Q_2} = 36\mu C$
Thus, the charge on the \[2\mu F\] capacitor is equal to $18\mu C$, and the charge on the \[4\mu F\] capacitor is equal to $36\mu C$.
Note: We should not use the inverse relation which is used for calculating the equivalent resistance of a parallel combination. The capacitances are added in a parallel combination.
Recently Updated Pages
Write an article on the need and importance of sports class 10 english JEE_Main
Write a composition in approximately 450 500 words class 10 english JEE_Main
Arrange the sentences P Q R between S1 and S5 such class 10 english JEE_Main
If x2 hx 21 0x2 3hx + 35 0h 0 has a common root then class 10 maths JEE_Main
The radius of a sector is 12 cm and the angle is 120circ class 10 maths JEE_Main
For what value of x function fleft x right x4 4x3 + class 10 maths JEE_Main
Other Pages
If a wire of resistance R is stretched to double of class 12 physics JEE_Main
The energy stored is a condenser is in the form of class 12 physics JEE_Main
Excluding stoppages the speed of a bus is 54 kmph and class 11 maths JEE_Main
Electric field due to uniformly charged sphere class 12 physics JEE_Main
In Searles apparatus when the experimental wire is class 11 physics JEE_Main