Answer
Verified
108.9k+ views
Hint: Here we know the total time of the crossing cars in the opposite direction and the same direction that when two bodies pass in the same direction, the relative velocity is equal to the number of velocities so that we can measure the distance.
Formula used:
The relative speed in opposite direction,
$\left( {x + y} \right)\,m/s$
The relative speed in same direction,
$\left( {x - y} \right)\,m/s$
Where,
$x,y$ are the distance points
Complete step by step solution:
Given by,
Distance in opposite direction $ = 9\,m$
Distance in same direction $ = 1\,m$
Let the speed of first and second car is $x$ and $y$
Here,
We need to calculate the speed of both cars
According to the relative speed formula,
We using,
The relative speed in opposite direction,
$\Rightarrow$ $x + y = 9$………….$(i)$
The relative speed in same direction,
$\Rightarrow$ $x - y = 1$………….$(ii)$
Combine the both equation \[(i)\] and $(ii)$
By solving,
We get,
$\Rightarrow$ $2x = 10$
On simplifying,
Here,
$\Rightarrow$ $x = 5\,m/s$
Now,
We put the value of $x$ in equation $(i)$
$\Rightarrow$ $5 + y = 9$
On solving,
We get,
$\Rightarrow$ $y = 4\,m/s$
Thus, the speed of the cars $5\,m{s^{ - 1}}$ and \[4\,m{s^{ - 1}}\].
Hence, option A is the correct answer.
Note: Relative velocity is the scalar quantity, while relative velocity is the quantity of the vector. One body will make a stationary velocity equal to zero and take the other body's velocity with respect to the stationary body, which is the sum of the velocities of the bodies moving in the opposite direction.
Formula used:
The relative speed in opposite direction,
$\left( {x + y} \right)\,m/s$
The relative speed in same direction,
$\left( {x - y} \right)\,m/s$
Where,
$x,y$ are the distance points
Complete step by step solution:
Given by,
Distance in opposite direction $ = 9\,m$
Distance in same direction $ = 1\,m$
Let the speed of first and second car is $x$ and $y$
Here,
We need to calculate the speed of both cars
According to the relative speed formula,
We using,
The relative speed in opposite direction,
$\Rightarrow$ $x + y = 9$………….$(i)$
The relative speed in same direction,
$\Rightarrow$ $x - y = 1$………….$(ii)$
Combine the both equation \[(i)\] and $(ii)$
By solving,
We get,
$\Rightarrow$ $2x = 10$
On simplifying,
Here,
$\Rightarrow$ $x = 5\,m/s$
Now,
We put the value of $x$ in equation $(i)$
$\Rightarrow$ $5 + y = 9$
On solving,
We get,
$\Rightarrow$ $y = 4\,m/s$
Thus, the speed of the cars $5\,m{s^{ - 1}}$ and \[4\,m{s^{ - 1}}\].
Hence, option A is the correct answer.
Note: Relative velocity is the scalar quantity, while relative velocity is the quantity of the vector. One body will make a stationary velocity equal to zero and take the other body's velocity with respect to the stationary body, which is the sum of the velocities of the bodies moving in the opposite direction.
Recently Updated Pages
If x2 hx 21 0x2 3hx + 35 0h 0 has a common root then class 10 maths JEE_Main
The radius of a sector is 12 cm and the angle is 120circ class 10 maths JEE_Main
For what value of x function fleft x right x4 4x3 + class 10 maths JEE_Main
What is the area under the curve yx+x1 betweenx0 and class 10 maths JEE_Main
The volume of a sphere is dfrac43pi r3 cubic units class 10 maths JEE_Main
Which of the following is a good conductor of electricity class 10 chemistry JEE_Main