Answer
Verified
110.4k+ views
Hint: In order to solve this question, the knowledge of the calculation of required resistance that is the resultant resistance of circuit is important. This should be kept in mind that the formula for calculation of resultant resistance is different for parallel and series combination.
Complete step by step answer:
It is given in question that,
Power of ${1^{st}}$ lamp, ${P_1} = 40W$ and voltage of ${1^{st}}$ lamp, ${V_1} = 220V$
Power of ${2^{nd}}$ lamp, ${P_2} = 60W$ , voltage of ${2^{nd}}$ lamp , ${V_2} = 220V$
As we know that,
$P = \dfrac{{{V^2}}}{R}$
Where $P$ is the power, $V$ is the potential difference and $R$ is the resistance.
In terms of resistance we have,
$R = \dfrac{{{V^2}}}{P}$
So, the resistance of ${1^{st}}$ lamp, would be given as,
${R_1} = \dfrac{{V_1^2}}{{{P_1}}}$
Putting the values of the respective quantities in the above equation we have,
${R_1} = \dfrac{{{{(220)}^2}}}{{60}}$
On Solving we have,
${R_1} = \dfrac{{2420}}{3}\Omega $
Now the resistance of the second lamp would be calculated the same way and would be given as,
${R_2} = \dfrac{{V_2^2}}{{{P_2}}}$
Putting the values of the respective quantities in the above equation we have,
${R_2} = \dfrac{{{{(220)}^2}}}{{40}}$
On Solving we have,
${R_1} = 1210\Omega $
(A) In the a part of the question both the lamps are in parallel connection,
So, the required resistance would be given by,
$\dfrac{1}{{\operatorname{Re} q}} = \dfrac{1}{{{R_1}}} + \dfrac{1}{{{R_2}}}$
Putting the respective values we have,
$\dfrac{1}{{\operatorname{Re} q}} = \dfrac{3}{{2420}} + \dfrac{1}{{1210}}$
On simplifying the above expression we get,
$\dfrac{1}{{\operatorname{Re} q}} = \dfrac{5}{{2420}}$
On solving we get,
${R_{req}} = 484\Omega $
As we know, the current drawn from electrical supply is given as,
$I = \dfrac{V}{{{R_{req}}}}$
Putting the values we have,
$I = \dfrac{{220}}{{484}}$
On solving we get,
$I = \dfrac{5}{{11}}A$
(B) Energy consumed by the two lamps in one hour is equal to energy consumed by ${1^{st}}$ lamp in one hour + energy consumed by ${2^{nd}}$ lamp in one hour
The equation would be represented as,
$E = {P_1} \times 1 + {P_2} \times 1$
This can also be written as,
$E = ({P_1} + {P_2}) \times 1$
Putting the values of ${P_1}$ and ${P_2}$ we have,
$E = (60W + 40W) \times 1hour$
On solving we have,
$E = 100Wh$
As, energy is expressed in $KWh$ and $1KWh = {10^2}Wh$
We have,
$E = 0.1KWh$
Note: The required resistance in series connection is calculated by simply adding the values of all resistance the given resistors in the series combination while in parallel connection as given in the question the reciprocal of the required resistance is equal to the sum of reciprocals of the resistances.
Complete step by step answer:
It is given in question that,
Power of ${1^{st}}$ lamp, ${P_1} = 40W$ and voltage of ${1^{st}}$ lamp, ${V_1} = 220V$
Power of ${2^{nd}}$ lamp, ${P_2} = 60W$ , voltage of ${2^{nd}}$ lamp , ${V_2} = 220V$
As we know that,
$P = \dfrac{{{V^2}}}{R}$
Where $P$ is the power, $V$ is the potential difference and $R$ is the resistance.
In terms of resistance we have,
$R = \dfrac{{{V^2}}}{P}$
So, the resistance of ${1^{st}}$ lamp, would be given as,
${R_1} = \dfrac{{V_1^2}}{{{P_1}}}$
Putting the values of the respective quantities in the above equation we have,
${R_1} = \dfrac{{{{(220)}^2}}}{{60}}$
On Solving we have,
${R_1} = \dfrac{{2420}}{3}\Omega $
Now the resistance of the second lamp would be calculated the same way and would be given as,
${R_2} = \dfrac{{V_2^2}}{{{P_2}}}$
Putting the values of the respective quantities in the above equation we have,
${R_2} = \dfrac{{{{(220)}^2}}}{{40}}$
On Solving we have,
${R_1} = 1210\Omega $
(A) In the a part of the question both the lamps are in parallel connection,
So, the required resistance would be given by,
$\dfrac{1}{{\operatorname{Re} q}} = \dfrac{1}{{{R_1}}} + \dfrac{1}{{{R_2}}}$
Putting the respective values we have,
$\dfrac{1}{{\operatorname{Re} q}} = \dfrac{3}{{2420}} + \dfrac{1}{{1210}}$
On simplifying the above expression we get,
$\dfrac{1}{{\operatorname{Re} q}} = \dfrac{5}{{2420}}$
On solving we get,
${R_{req}} = 484\Omega $
As we know, the current drawn from electrical supply is given as,
$I = \dfrac{V}{{{R_{req}}}}$
Putting the values we have,
$I = \dfrac{{220}}{{484}}$
On solving we get,
$I = \dfrac{5}{{11}}A$
(B) Energy consumed by the two lamps in one hour is equal to energy consumed by ${1^{st}}$ lamp in one hour + energy consumed by ${2^{nd}}$ lamp in one hour
The equation would be represented as,
$E = {P_1} \times 1 + {P_2} \times 1$
This can also be written as,
$E = ({P_1} + {P_2}) \times 1$
Putting the values of ${P_1}$ and ${P_2}$ we have,
$E = (60W + 40W) \times 1hour$
On solving we have,
$E = 100Wh$
As, energy is expressed in $KWh$ and $1KWh = {10^2}Wh$
We have,
$E = 0.1KWh$
Note: The required resistance in series connection is calculated by simply adding the values of all resistance the given resistors in the series combination while in parallel connection as given in the question the reciprocal of the required resistance is equal to the sum of reciprocals of the resistances.
Recently Updated Pages
Write an article on the need and importance of sports class 10 english JEE_Main
Write a composition in approximately 450 500 words class 10 english JEE_Main
Arrange the sentences P Q R between S1 and S5 such class 10 english JEE_Main
If x2 hx 21 0x2 3hx + 35 0h 0 has a common root then class 10 maths JEE_Main
The radius of a sector is 12 cm and the angle is 120circ class 10 maths JEE_Main
For what value of x function fleft x right x4 4x3 + class 10 maths JEE_Main
Other Pages
Electric field due to uniformly charged sphere class 12 physics JEE_Main
If a wire of resistance R is stretched to double of class 12 physics JEE_Main
In Searles apparatus when the experimental wire is class 11 physics JEE_Main
The energy stored is a condenser is in the form of class 12 physics JEE_Main
Excluding stoppages the speed of a bus is 54 kmph and class 11 maths JEE_Main