Two resistors of resistances ${R_1} = 100 \pm 3$ ohm and ${R_2} = 200 \pm 4$ ohm are connected in parallel. The equivalent combination of the parallel connection is:
A) $66.7 \pm 1.8$ohm
B) $66.7 \pm 4$ohm
C) $66.7 \pm 3$ohm
D) $66.7 \pm 7$ohm
Answer
Verified
123k+ views
Hint: In parallel combination of resistances the equivalent resistance is given as the ratio of the product of the two resistances and the error part will be solved using the formula given below:
$\dfrac{1}{R} = \dfrac{1}{{{R_1}}} + \dfrac{1}{{{R_2}}}$(Parallel combination formula)
$\dfrac{{dR}}{{{R^2}}} = \dfrac{{d{R_1}}}{{{R^2}_1}} + \dfrac{{d{R_2}}}{{{R^2}_2}}$ ($R_1$ and $R_2$ are the two resistances given to us, we have differentiated the parallel combination formula)
Using above relations we will find the parallel combination of two resistances and their error part.
Complete step by step solution:
Let’s have some discussion on parallel combination first and then we will proceed for the calculation part:
In parallel, the combination of resistors voltage remains the same in all the branches of the circuit be it AC or DC circuit. Current will have different values in all the branches and the magnitude of the current will depend on the impedance a particular branch has.
Let’s come to the calculation part now:
We will solve the magnitude part first:
$ \Rightarrow \dfrac{1}{R} = \dfrac{1}{{{R_1}}} + \dfrac{1}{{{R_2}}}$(We will substitute the value of both the resistances in the formula)
$ \Rightarrow \dfrac{1}{R} = \dfrac{1}{{100}} + \dfrac{1}{{200}}$(on taking LCM)
$ \Rightarrow R = \dfrac{{100 \times 200}}{{300}} $
$ \Rightarrow R = 66.67ohm $
(Value of magnitude part of the parallel combination)
Now, we will solve the error part of the two parallel resistors:
$ \Rightarrow \dfrac{{dR}}{{{R^2}}} = \dfrac{{d{R_1}}}{{{R^2}_1}} + \dfrac{{d{R_2}}}{{{R^2}_2}}$(We will substitute the numerical values in the given equation)
$ \Rightarrow \dfrac{{dR}}{{{{66.67}^2}}} = \dfrac{3}{{{{100}^2}}} + \dfrac{4}{{{{200}^2}}} $
$\Rightarrow \dfrac{{dR}}{{{{66.67}^2}}} = \dfrac{3}{{10000}} + \dfrac{4}{{40000}} $
(The error part was 3 and 4 respectively)
On multiplying $R_2$ term on RHS
$ \Rightarrow dR = {(66.67)^2}[{\dfrac{3}{10000} - \dfrac{4}{40000}}] $
$ \Rightarrow dR = ({(66.67)^2} \times .0003) - (.0004 \times {(66.67)^2}) $
(After simplification our equation becomes)
$dR = 1.78$ or $1.8$
We got the error value as 1.8 ohm.
Therefore, option (A) is correct.
Note: If the resistors are added in series combination instead of parallel then we would have added the magnitude of the resistors directly without doing any reciprocal of the magnitude. For the error part; we would have added the resistance value in the error part too again directly.
$\dfrac{1}{R} = \dfrac{1}{{{R_1}}} + \dfrac{1}{{{R_2}}}$(Parallel combination formula)
$\dfrac{{dR}}{{{R^2}}} = \dfrac{{d{R_1}}}{{{R^2}_1}} + \dfrac{{d{R_2}}}{{{R^2}_2}}$ ($R_1$ and $R_2$ are the two resistances given to us, we have differentiated the parallel combination formula)
Using above relations we will find the parallel combination of two resistances and their error part.
Complete step by step solution:
Let’s have some discussion on parallel combination first and then we will proceed for the calculation part:
In parallel, the combination of resistors voltage remains the same in all the branches of the circuit be it AC or DC circuit. Current will have different values in all the branches and the magnitude of the current will depend on the impedance a particular branch has.
Let’s come to the calculation part now:
We will solve the magnitude part first:
$ \Rightarrow \dfrac{1}{R} = \dfrac{1}{{{R_1}}} + \dfrac{1}{{{R_2}}}$(We will substitute the value of both the resistances in the formula)
$ \Rightarrow \dfrac{1}{R} = \dfrac{1}{{100}} + \dfrac{1}{{200}}$(on taking LCM)
$ \Rightarrow R = \dfrac{{100 \times 200}}{{300}} $
$ \Rightarrow R = 66.67ohm $
(Value of magnitude part of the parallel combination)
Now, we will solve the error part of the two parallel resistors:
$ \Rightarrow \dfrac{{dR}}{{{R^2}}} = \dfrac{{d{R_1}}}{{{R^2}_1}} + \dfrac{{d{R_2}}}{{{R^2}_2}}$(We will substitute the numerical values in the given equation)
$ \Rightarrow \dfrac{{dR}}{{{{66.67}^2}}} = \dfrac{3}{{{{100}^2}}} + \dfrac{4}{{{{200}^2}}} $
$\Rightarrow \dfrac{{dR}}{{{{66.67}^2}}} = \dfrac{3}{{10000}} + \dfrac{4}{{40000}} $
(The error part was 3 and 4 respectively)
On multiplying $R_2$ term on RHS
$ \Rightarrow dR = {(66.67)^2}[{\dfrac{3}{10000} - \dfrac{4}{40000}}] $
$ \Rightarrow dR = ({(66.67)^2} \times .0003) - (.0004 \times {(66.67)^2}) $
(After simplification our equation becomes)
$dR = 1.78$ or $1.8$
We got the error value as 1.8 ohm.
Therefore, option (A) is correct.
Note: If the resistors are added in series combination instead of parallel then we would have added the magnitude of the resistors directly without doing any reciprocal of the magnitude. For the error part; we would have added the resistance value in the error part too again directly.
Recently Updated Pages
How to find Oxidation Number - Important Concepts for JEE
How Electromagnetic Waves are Formed - Important Concepts for JEE
Electrical Resistance - Important Concepts and Tips for JEE
Average Atomic Mass - Important Concepts and Tips for JEE
Chemical Equation - Important Concepts and Tips for JEE
Concept of CP and CV of Gas - Important Concepts and Tips for JEE
Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility & More
JEE Main Login 2045: Step-by-Step Instructions and Details
JEE Main Chemistry Question Paper with Answer Keys and Solutions
JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking
JEE Main 2023 January 24 Shift 2 Question Paper with Answer Keys & Solutions
JEE Main Chemistry Exam Pattern 2025
Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs
JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More
Learn About Angle Of Deviation In Prism: JEE Main Physics 2025
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
Dual Nature of Radiation and Matter Class 12 Notes: CBSE Physics Chapter 11
Electric field due to uniformly charged sphere class 12 physics JEE_Main