Answer
Verified
108.9k+ views
Hint: In order to get the solution of the given question, we need to use the Hooke’s law for both the wires A and B. We can relate the values of force from Hooke’s law as the ratios of length and diameter is given. Finally, after solving the equation framed, we can conclude with the required solution of the given question.
Complete step by step solution:
In the question the ratios, of the length is given as,$\dfrac{{{l_A}}}{{{l_B}}} = \dfrac{1}{2}$ and the ratios of the diameters of the wires are given as,$\dfrac{{{D_A}}}{{{D_B}}} = \dfrac{2}{1}$.
As from the Hooke’s law we know that, $Y = \dfrac{{Fl}}{{\Delta lA}}$
Area,$A = \pi \dfrac{{{D^2}}}{4}$
Now, we need to write Hooke’s law for both the wires.
For wire A,$Y = \dfrac{{{F_A}{l_A}}}{{\Delta l\pi \dfrac{{{D^2}}}{4}}}$
$ \Rightarrow {F_A} = \dfrac{{Y\pi {D_A}^2\Delta l}}{{4{l_A}}}$
Similarly, for wire B, the force can be written as ${F_B} = \dfrac{{Y\pi {D_B}^2\Delta l}}{{4{l_B}}}$
Now, we need to take the ratio of forces on both the wires.
Therefore,$\dfrac{{{F_A}}}{{{F_B}}} = \dfrac{{Y\pi {D_A}^2\Delta l}}{{4{l_A}}} \times \dfrac{{4{l_B}}}{{Y\pi {D_B}^2\Delta l}}$
$ \Rightarrow \dfrac{{{F_A}}}{{{F_B}}} = \dfrac{{D_A^2}}{{D_B^2}} \times \dfrac{{{l_B}}}{{{l_A}}}$
$ \Rightarrow \dfrac{{{F_A}}}{{{F_B}}} = \dfrac{{{2^2}}}{{{1^2}}} \times \dfrac{2}{1}$
$\therefore \dfrac{{{F_A}}}{{{F_B}}} = \dfrac{8}{1}$
Therefore, the required ratio, $\dfrac{{{F_A}}}{{{F_B}}}$=$8:1$
Hence, option (D), i.e. $8:1$ is the correct choice for the given question.
Note: Hooke’s law is also known as the law of elasticity. According to Hooke’s law when the deformation in a body is very small, then the displacement is directly proportional to the force applied to deform the body. We can express Hooke’s law in the form of stress and strain also. The expression of Hooke’s law can also be given as, $F = - kx$ where $'k'$ is a constant. With the help of Hooke’s law we can define elasticity of a material. Hooke’s law also helps us to understand the behavior of a body when it is compressed or stretched.
Complete step by step solution:
In the question the ratios, of the length is given as,$\dfrac{{{l_A}}}{{{l_B}}} = \dfrac{1}{2}$ and the ratios of the diameters of the wires are given as,$\dfrac{{{D_A}}}{{{D_B}}} = \dfrac{2}{1}$.
As from the Hooke’s law we know that, $Y = \dfrac{{Fl}}{{\Delta lA}}$
Area,$A = \pi \dfrac{{{D^2}}}{4}$
Now, we need to write Hooke’s law for both the wires.
For wire A,$Y = \dfrac{{{F_A}{l_A}}}{{\Delta l\pi \dfrac{{{D^2}}}{4}}}$
$ \Rightarrow {F_A} = \dfrac{{Y\pi {D_A}^2\Delta l}}{{4{l_A}}}$
Similarly, for wire B, the force can be written as ${F_B} = \dfrac{{Y\pi {D_B}^2\Delta l}}{{4{l_B}}}$
Now, we need to take the ratio of forces on both the wires.
Therefore,$\dfrac{{{F_A}}}{{{F_B}}} = \dfrac{{Y\pi {D_A}^2\Delta l}}{{4{l_A}}} \times \dfrac{{4{l_B}}}{{Y\pi {D_B}^2\Delta l}}$
$ \Rightarrow \dfrac{{{F_A}}}{{{F_B}}} = \dfrac{{D_A^2}}{{D_B^2}} \times \dfrac{{{l_B}}}{{{l_A}}}$
$ \Rightarrow \dfrac{{{F_A}}}{{{F_B}}} = \dfrac{{{2^2}}}{{{1^2}}} \times \dfrac{2}{1}$
$\therefore \dfrac{{{F_A}}}{{{F_B}}} = \dfrac{8}{1}$
Therefore, the required ratio, $\dfrac{{{F_A}}}{{{F_B}}}$=$8:1$
Hence, option (D), i.e. $8:1$ is the correct choice for the given question.
Note: Hooke’s law is also known as the law of elasticity. According to Hooke’s law when the deformation in a body is very small, then the displacement is directly proportional to the force applied to deform the body. We can express Hooke’s law in the form of stress and strain also. The expression of Hooke’s law can also be given as, $F = - kx$ where $'k'$ is a constant. With the help of Hooke’s law we can define elasticity of a material. Hooke’s law also helps us to understand the behavior of a body when it is compressed or stretched.
Recently Updated Pages
If x2 hx 21 0x2 3hx + 35 0h 0 has a common root then class 10 maths JEE_Main
The radius of a sector is 12 cm and the angle is 120circ class 10 maths JEE_Main
For what value of x function fleft x right x4 4x3 + class 10 maths JEE_Main
What is the area under the curve yx+x1 betweenx0 and class 10 maths JEE_Main
The volume of a sphere is dfrac43pi r3 cubic units class 10 maths JEE_Main
Which of the following is a good conductor of electricity class 10 chemistry JEE_Main