
Which is correct for any H-like species?
(A) \[({E_2} - {E_1}) > ({E_3} - {E_2}) > ({E_4} - {E_3})\]
(B) \[({E_2} - {E_1}) < ({E_3} - {E_2}) < ({E_4} - {E_3})\]
(C) \[({E_2} - {E_1}) = ({E_3} - {E_2}) = ({E_4} - {E_3})\]
(D) \[({E_2} - {E_1}) = \dfrac{1}{4}({E_3} - {E_2}) = \dfrac{1}{9}({E_4} - {E_3})\]
Answer
133.5k+ views
Hint: Quantum numbers are characteristic quantities that are used to describe the various properties of an electron in an atom like the position, energy or spin of the electrons. There are four quantum numbers namely, principal quantum number, azimuthal quantum number, magnetic quantum number and spin quantum number.
Complete step by step solution:
Principal quantum number is denoted by ‘n’ and it represents the electron shell of an atom. For an atom, its energy is inversely proportional to the square of its principal quantum number.
\[{\text{E}} \propto - \dfrac{{\text{1}}}{{{{\text{n}}^{\text{2}}}}}\]
Where E is the energy of an electron and n is a principal quantum number. Now we calculate the values of \[({E_2} - {E_1})\],\[({E_3} - {E_2})\]and \[({E_4} - {E_3})\].
For \[({E_2} - {E_1})\], \[{n_1} = 1,{n_2} = 2\]
\[
{{\text{E}}_2} - {E_1} \propto - \left( {\dfrac{{\text{1}}}{{{2^2}}} - \dfrac{1}{{{1^2}}}} \right) \\
{{\text{E}}_2} - {E_1} \propto 0.75 \\
\]
For \[{\text{(}}{{\text{E}}_{\text{3}}}{\text{ - }}{{\text{E}}_{\text{2}}}{\text{)}}\],\[{{\text{n}}_3}{\text{ = 3,}}{{\text{n}}_{\text{2}}}{\text{ = 2}}\]
\[
{{\text{E}}_3} - {E_2} \propto - \left( {\dfrac{{\text{1}}}{{{3^2}}} - \dfrac{1}{{{2^2}}}} \right) \\
{{\text{E}}_3} - {E_2} \propto 0.14 \\
\]
For \[{\text{(}}{{\text{E}}_{\text{4}}}{\text{ - }}{{\text{E}}_{\text{3}}}{\text{)}}\], \[{{\text{n}}_3}{\text{ = 3,}}{{\text{n}}_4}{\text{ = 4}}\]
\[
{{\text{E}}_4} - {E_3} \propto - \left( {\dfrac{{\text{1}}}{{{4^2}}} - \dfrac{1}{{{3^2}}}} \right) \\
{{\text{E}}_4} - {E_3} \propto 0.049 \\
\]
So, the correct relationship for H-like species is, \[({E_2} - {E_1}) > ({E_3} - {E_2}) > ({E_4} - {E_3})\].
Hence the correct option is (A).
Note: Similarly, Azimuthal quantum number is denoted by ‘l’ and it represents the number of angular nodes. Magnetic quantum number is denoted by ‘m’ and explains the angular momentum. Spin quantum number is denoted by ‘s’ and explains the direction of spin.
Complete step by step solution:
Principal quantum number is denoted by ‘n’ and it represents the electron shell of an atom. For an atom, its energy is inversely proportional to the square of its principal quantum number.
\[{\text{E}} \propto - \dfrac{{\text{1}}}{{{{\text{n}}^{\text{2}}}}}\]
Where E is the energy of an electron and n is a principal quantum number. Now we calculate the values of \[({E_2} - {E_1})\],\[({E_3} - {E_2})\]and \[({E_4} - {E_3})\].
For \[({E_2} - {E_1})\], \[{n_1} = 1,{n_2} = 2\]
\[
{{\text{E}}_2} - {E_1} \propto - \left( {\dfrac{{\text{1}}}{{{2^2}}} - \dfrac{1}{{{1^2}}}} \right) \\
{{\text{E}}_2} - {E_1} \propto 0.75 \\
\]
For \[{\text{(}}{{\text{E}}_{\text{3}}}{\text{ - }}{{\text{E}}_{\text{2}}}{\text{)}}\],\[{{\text{n}}_3}{\text{ = 3,}}{{\text{n}}_{\text{2}}}{\text{ = 2}}\]
\[
{{\text{E}}_3} - {E_2} \propto - \left( {\dfrac{{\text{1}}}{{{3^2}}} - \dfrac{1}{{{2^2}}}} \right) \\
{{\text{E}}_3} - {E_2} \propto 0.14 \\
\]
For \[{\text{(}}{{\text{E}}_{\text{4}}}{\text{ - }}{{\text{E}}_{\text{3}}}{\text{)}}\], \[{{\text{n}}_3}{\text{ = 3,}}{{\text{n}}_4}{\text{ = 4}}\]
\[
{{\text{E}}_4} - {E_3} \propto - \left( {\dfrac{{\text{1}}}{{{4^2}}} - \dfrac{1}{{{3^2}}}} \right) \\
{{\text{E}}_4} - {E_3} \propto 0.049 \\
\]
So, the correct relationship for H-like species is, \[({E_2} - {E_1}) > ({E_3} - {E_2}) > ({E_4} - {E_3})\].
Hence the correct option is (A).
Note: Similarly, Azimuthal quantum number is denoted by ‘l’ and it represents the number of angular nodes. Magnetic quantum number is denoted by ‘m’ and explains the angular momentum. Spin quantum number is denoted by ‘s’ and explains the direction of spin.
Recently Updated Pages
JEE Main 2025 Session 2 Form Correction (Closed) – What Can Be Edited

Sign up for JEE Main 2025 Live Classes - Vedantu

JEE Main Books 2023-24: Best JEE Main Books for Physics, Chemistry and Maths

JEE Main 2023 April 13 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 11 Shift 2 Question Paper with Answer Key

JEE Main 2023 April 10 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Current Loop as Magnetic Dipole and Its Derivation for JEE

Inertial and Non-Inertial Frame of Reference - JEE Important Topic

Other Pages
NCERT Solutions for Class 11 Chemistry Chapter 9 Hydrocarbons

JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Chemistry Chapter 5 Thermodynamics

Hydrocarbons Class 11 Notes: CBSE Chemistry Chapter 9

NCERT Solutions for Class 11 Chemistry Chapter 7 Redox Reaction

Thermodynamics Class 11 Notes: CBSE Chapter 5
